WinBUGS Development Interface (WBDev) — Implementing
your own univariate distributions

Dave Lunn, Chris Jackson
Imperial College School of Medicine, London, UK
d.lunn@imperial.ac.uk, chris. jackson@imperial.ac.uk

September 1, 2004

1 Introduction

This document explains how you can add new univariate distributions to WinBUGS (1.4) by ‘hard-
wiring’ them into the system via compiled Pascal code. Although the “zeros trick” and the “ones trick”,
described in the WinBUGS User Manual, can both be used to implement new distributions, there are
several major advantages to fully integrating them into the system instead. Firstly, built-in distributions
can be evaluated much more quickly than distributions defined via the BUGS language. Second, hiding
the details of a distribution’s likelihood and/or prior contribution within ‘hard-wired’ components can
lead to vastly simplified model code, which reduces the likelihood of coding errors occurring and is
straightforward to maintain. Additionally, with Component Pascal we have the full flexibility of a
general-purpose (modern) computer language to hand for specifying arbitrary distributional properties.

We demonstrate how to implement a new distribution as a ‘hard-wired’ component via a worked example
in which we define a truncated normal distribution, truncated, on the left, at zero. The probability
density function (pdf) is given by

p(x) = 172 - (2) e z <0 (1)
T=exp{—F(x—p)?} /{1 -@(-7"2p)} >0

where, if the distribution weren’t truncated, p and 7 would represent the mean and precision (inverse-
variance), respectively. However, here we refer to p as the location and 7 as the inverse-scale. Some
readers may be under the impression that this distribution could be specified straightforwardly in Win-
BUGS by applying the I(.,.) construct to dnorm(.,.), e.g. dnorm(mu, tau)I(0, ). Whilst in some
circumstances this may lead to the same results as the distribution given by (1), the I(.,.) construct
was originally designed only to denote censored observations and shouldn’t really be used in an attempt
to model truncation. In the former case, the pdf of the associated distribution is unchanged by the
specification of lower and upper bounds and those bounds are used simply to ensure that any samples
drawn for the relevant, supposedly censored, quantity are within the observed range. However, it is
clear from Eqn. (1) that under truncation a distribution’s pdf is changed: since all pdfs must integrate
to 1 over the distribution’s support, then the pdf of a truncated distribution is given by that of the
untruncated distribution divided by the integral of the untruncated distribution between the truncation
points — hence the normalizing constant 1 — ®(—7/2) in (1) above, where ®(.) denotes the cumulative
distribution function of the standard normal distribution. A key point here is that the normalizing con-
stant is a function of both x4 and 7, and so if ¢ and/or 7 are unknown parameters, then the likelihood
contributions to their full conditional distributions that would arise from specifying (1) and dnorm(mu,
tau)I(0, ) separately are fundamentally different.

It is important to note that there is no reason whatsoever why a truncated distribution cannot also be
censored, i.e. we can still apply the I(.,.) construct to our new distribution. For example, a particular



model may include a quantity with (1) as its distribution that we have observed as being less than a
ceratin value, u, say; in this case we should append I(, u), or, equivalently, I(0, u), to the distribution
specifier.

2 System set-up

Computer code for the truncated normal distribution defined in Equation 1 above can be found in
the file WBDev/Mod/UnivariateTemplate.odc. This is a Component Pascal module that under normal
circumstances, i.e. if you had written it yourself, would need to be compiled and then ‘linked’ into the
core WinBUGS software before it could be used from within the software — we have already done this
for this example, however, to aid with this exposition (see later). Before discussing the new module in
detail we provide instructions on how to set up your system so that Component Pascal code can be
compiled.

1. Download BlackBox Component Builder from the following web-page:
http://wuw.oberon.ch/blackbox.html

2. Unzip the downloaded file, if necessary. Install ‘BlackBox’ by double-clicking on the Setup.exe
icon and following the instructions. The software should be installed into the new directory
Program Files/BlackBox.

3. Open My Computer (or its equivalent) and navigate to the Program Files/WinBUGS14 directory;
then press Ctrl+A (or select Select All from the Edit menu) to select all files and sub-directories
within the WinBUGS14 directory. Now press Ctrl+C (or select Copy from the Edit menu) to copy
those files and sub-directories.

4. Continue using My Computer to navigate to the Program Files/BlackBox directory and then
press Ctrl+V (or select Paste from the Edit menu) to paste the copied files and sub-directories
to this location. Select “Yes to All” if prompted about replacing existing files.

5. Now your copy of BlackBox should include the full functionality of WinBUGS 1.4 (including this
WBDev interface) within it, and so the BlackBox.exe icon on the desk-top or that in the Program
Files/BlackBox directory can be used either to run WinBUGS in the normal way or to conduct
WinBUGS development work (or even more general Component Pascal programming).

3 New module — “WBDevUnivariateTemplate”

Now start your copy of BlackBox and open the new module:
Program Files/BlackBox/WBDev/Mod/UnivariateTemplate.odc

Note that to reduce the risk of errors creeping into the system we recommend that all other new
components are also stored in the WBDev/Mod directory. As the name suggests, the UnivariateTemplate
module can be used as a template for such new components, so long as they represent univariate
distributions (see the file “WBDev_functions.pdf” for details on hard-wiring new logical functions,
both scalar- and vector-valued, into the system). Please note that only those parts of the code that
are currently marked in blue should be modified. The following notes pertain to areas of code labelled
with the corresponding numbers within comment markers, i.e. (* and *), e.g. (* this is a comment
in Component Pascal *).

(*1x) The first line of a Component Pascal module should always read MODULE, followed by the module’s
name, in this case WBDevUnivariateTemplate, followed by a semi-colon. The last line of the
module should read END, followed by the module’s name, followed by a full stop (period). All new



(*2%) — (*x3%)

(x4%)

(x5%)

(*x6%)— (*x9%)

(*10%)—(*14%)

(¥15%) — (*19%)

module names for new components of this type should begin with WBDev; the corresponding file
names should be identical but with the WBDev prefix removed (they must also begin with at least
one capital letter); all new files of this type should be saved in the WBDev/Mod directory.

Various other modules can be ‘imported’ into each new module, which means that procedures
and/or data structures defined in those modules can be used/exploited from within the new mod-
ule. The Math module (line (*3+*)) is an integral part of the BlackBox software since it defines
many fundamental mathematical functions, which are called from within other modules via the
syntax Math. followed by the relevant procedure name, e.g. Math.Ln(.) for natural logarithms,
Math.Sqrt(.) for square roots — see lines (*27%), (¥28%) and (*¥50%*). Documentation regard-
ing the Math module can be accessed by highlighting the word Math in BlackBox and selecting
Documentation from the second Info menu (the first Info menu belongs to WinBUGS).

Similarly, WBDevSpecfunc and WBDevRandnum are utility modules that provide numerous pro-
cedures for defining and sampling from various probability distributions. WBDevSpecfunc pro-
vides several ‘special functions’ such as WBDevSpecfunc.Phi(.), the cumulative distribution
function of the standard normal distribution ®(.) (see lines (*¥28%), (¥51%) and (¥52%)), and
WBDevSpecfunc.LogGammaFunc (.), which returns the natural logarithm of the Gamma function,
ie. InT'(z) = In (fooo tx_le_tdt). WBDevRandnum, on the other hand, provides many ‘black-box’
algorithms that can be used for generating pseudo-random numbers — see, for example, lines
(x63%), (*x65%), (x67*) and (*x69%). Each of these utility modules is documented separately in
the WBDev/Docu directory: please see the files Specfunc.odc and Randnum. odc for full details, or
highlight the appropriate module name in BlackBox and select Documentation from the second
Info menu.

Here we simply define meaningful names with which to reference the arguments of our new dis-
tribution — this is by no means essential but is considered to be ‘good practice’ as it reduces
the likelihood of coding errors arising. These are constants that have ‘global’ scope within the
module, i.e. they can be referred to from anywhere within the module. For details regarding their
usage, please see the notes pertaining to the LogFullLikelihood(.), LogPropLikelihood(.) and
LogPrior(.) procedures below (lines (¥20%)—(*42%)).

log2Pi is a global variable used to hold the value of In(2), which is generally useful for specifying
normal densities. Global variables are good places to store such ‘constants’ as they need be
evaluated only once, when the module is loaded into memory, although their values may be
required a great many times throughout the course of a particular analysis. Because of this fact,
there is no need to remove the variable (and/or its definition) when defining distributions for
which the value of In(27) is irrelevant. Note that the definition of the 1og2Pi variable takes place
towards the foot of the new module, within the ‘Init’ procedure — any other such variables should
be defined in the same place.

As the name suggests, we use the DeclareArgTypes(.) procedure to declare the types of ar-
guments required to define the distribution of interest. In the case of our truncated normal
distribution defined in Eqn. (1) above, the required arguments are the location parameter p and
the inverse-scale parameter 7. Thus we have two scalar arguments and so we set the args variable
equal to "ss" (s denotes a scalar whereas a vector would be denoted by v).

The DeclareProperties(.) procedure is used to specify two important pieces of information
about the new distribution. First, whether the distribution is discrete or continuous; and, second,
whether or not we can evaluate its cumulative distribution function, i.e. whether we can integrate
the pdf, either numerically or analytically, in which case an algorithm to do so should be pro-
vided within the Cumulative(.) procedure — see the notes below for lines (*43%)—(x53%). The
isDiscrete variable should be set equal to “TRUE” if the distribution is discrete and “FALSE” if
it is continuous. The canIntegrate variable should be set equal to “TRUE” if an algorithm to
evaluate the cumulative distribution function is to be provided in the Cumulative(.) procedure,
and “FALSE” otherwise.

As the name suggests, the NaturalBounds(.) procedure should specify the natural bounds of
the distribution, that is, regardless of any censoring that might be applied. (Note that ‘INF’ and
‘~INF’ can be used to denote 400 and —oo, respectively, and that bounds for discrete distributions



(%20%) — (*42%)

(*43%)—(*53%)

should be inclusive.) This procedure receives, as an input parameter, a variable named ‘node’,
as do all other procedures in what follows. This variable represents a stochastic ‘node’ in the
underlying graphical model that is distributed according to the new distribution. It is passed to
the NaturalBounds(.) procedure because the distribution’s bounds may be dependent on some
of its arguments. For example, the maximum value that a binomial node can attain is given by
the ‘number of trials’ argument.

The LogFullLikelihood(.), LogPropLikelihood(.) and LogPrior(.) procedures all return, via
the ‘value’ variable, the natural logarithm of a number that is proportional to the node variable’s
probability density function evaluated at the node’s current value, with the node’s arguments (or
‘parents’) also equal to their current values. The reason for having three procedures that all do
essentially the same thing is that WinBUGS doesn’t always require the same level of ‘exactness’.
Sometimes WinBUGS needs the log-pdf specifying exactly, i.e. including all normalizing constants,
in which case the LogFullLikelihood(.) procedure is called by the core software. Other times,
normalizing constants such as In(27) can be ignored, in which case LogPropLikelihood(.) is

called. Often, however, only those factors of the node’s pdf that are functions of the node’s
F1/2
V2T
in these circumstances, since they do not involve x. In this latter case, the software calls the

LogPrior(.) procedure — see lines (*34%)—(*42%).

value are needed; for example, the and 1 — ®(—72p) terms in Eqn. (1) can be omitted,

Of course, as there is no harm done in including normalizing constants when they are
not actually required, one can always simply call LogFullLikelihood(.) from within both
LogPropLikelihood(.) and LogPrior(.) to save coding, as we have done in this worked ex-
ample for the LogPropLikelihood(.) procedure — see line (*32*). However, considerable gains
in efficiency can often be made by avoiding unnecessary calculations, especially in cases where
normalizing constants are cumbersome to calculate.

Throughout these procedures we refer several times to two of the node variable’s ‘internal fields’,
namely ‘value’ and ‘arguments’. The value field is a ‘read-only’ field that stores the node’s
current value. The arguments field, on the other hand, is an ‘irregular’ matrix where each
row corresponds to one of the arguments declared in DeclareArgTypes(.) above (in the same
order). If a particular argument is a vector (v) then the length of the corresponding row of
node.arguments is equal to the length of that vector, whereas if an argument is a scalar (s) then
the length of the corresponding row is 1. The procedure call node.arguments[i] [j].Value() re-
turns the value of the jth element of the ith argument. (Note that all array indices start at 0
in Component Pascal rather than 1.) Thus the values of p and 7 are obtained via the calls
node.arguments [location] [0] .Value() and node.arguments [inverseScale] [0] .Value(), re-
spectively, where ‘location’ (= 0) and ‘inverseScale’ (= 1) are the global constants defined on
line (*4%).

Note that at the beginning of each procedure, e.g. lines (¥21%)—(*22%), any number of ‘local’
variables can be declared for use within the procedure, so long as their names do not clash with
other variable/procedure names — the compiler (Ctrl+K) will normally inform the programmer of
any errors.

In cases where we can evaluate the new distribution’s cumulative distribution function, the
Cumulative(.) procedure should be used to return, via the ‘value’ variable, the value of that
function at ‘x’, where x is a real-valued input parameter. The cumulative distribution function of
the distribution defined by (1) is

(712w — ) — (=7"2p)
1 a(—71%)

(2)

and so this is specified in our worked example via lines (¥51%)—(*52*). It is worth noting, how-
ever, that the Cumulative(.) procedure is only called by the software when it is attempting
to calculate the deviance contribution from a censored observation. Hence, if deviance is not of
interest and/or censoring is not an issue, then the details of the cumulative distribution function
needn’t be specified. If this is the case then we must specify “canIntegrate := FALSE;” in the
DeclareProperties(.) procedure, and it is advisable to replace any code between the “BEGIN”



and “END Cumulative;” lines of the Cumulative(.) procedure with the “HALT(126) ;71 state-
ment that is currently commented out on line (*47x%), just to ‘catch’ any unexpected calls to the
procedure.

(*54%)—(*71%) The DrawSample(.) procedure should return, via the ‘sample’ variable, a pseudo-random number
from the new distribution. This is the only place where we may need to be concerned with the
type of censoring applied, if any — this information is passed into the procedure, by WinBUGS,
via the ‘censoring’ variable, which is integer-valued. On line (¥60%) we make use of the node
variable’s Bounds(.) procedure, which returns, via ‘left’ and ‘right’, the ‘innermost’ of the
node’s natural bounds and any applicable censoring bounds. These may be passed directly into
any suitably flexible sampling procedure. However, in this case, to avoid passing possibly infinite
bounds into procedures that may not know how to deal with them, we make use of a Compo-
nent Pascal CASE statement to ‘branch’ on the various different types of censoring possible —
lines (x61%)—(*70%). In the two cases where the right-hand bound is infinite (but the left-hand
bound is finite), i.e. when censoring = WBDevUnivariate.noCensoring and when censoring
= WBDevUnivariate.leftCensored, WBDevRandnum.NormalLeftTruncated(mu, tau, left) is
used to obtain a single sample from N(u,77!) truncated on the left at ‘left’. When both bounds
are finite, WBDevRandnum.NormalTruncated(.) is an appropriate procedure.

Please note that (almost) every Component Pascal statement ends with a semi-colon.
Hopefully this brief example demonstrates sufficient use of the Component Pascal syntax that the
reader is able to begin writing their own modules from this template. Detailed documentation on both
BlackBox and the Component Pascal language can be accessed via the file:

Program Files/BlackBox/Docu/Help.odc

Further insight may also be gained by examining other new distributions in the set of “shared compo-
nents” that can be downloaded from the WBDev web-site. Please read the instructions below before
attempting to write your own modules.

4 Using “WBDevUnivariateTemplate” as a template

The following instructions should be followed closely when defining a new BUGS distribution via the
WBDevUnivariateTemplate template:

1. Choose a mname for the new component, NewDistribution, say (the new name
must begin with a capital letter). Start your copy of BlackBox and open the
WBDev/Mod/UnivariateTemplate.odc template from within it; then save the template under
the new name, e.g. WBDev/Mod/NewDistribution.odc — be careful not to overwrite an ex-
isting module! Now modify the module name both at the top and at the bottom of the new
file — change these from WBDevUnivariateTemplate to WBDev followed by the new component’s
name, e.g. WBDevNewDistribution. Save and compile the new component by pressing Ctrl+S
(save) followed by Ctrl+K (compile) — there should be no compilation errors at this stage since
only the module name has been changed.

2. Now modify the code in the new module according to the desired distributional form,
i.e. declare the types of arguments required on the line labelled (*8%) and redefine the
DeclareProperties(.), NaturalBounds(.), LogFullLikelihood(.), LogPropLikelihood(.),
LogPrior(.), Cumulative(.), and DrawSample(.) procedures. You can save the new module at
any time by pressing Ctrl+S (or by selecting Save from the File menu). You can also attempt to
compile the code at any time by pressing Ctrl+K (or by selecting Compile from the Dev menu). If
there are any compilation errors when you attempt to compile your code, each one will be marked
in the code by a grey box with a white cross running through it. An error message pertaining to

1The numbers passed to calls of the HALT(.) procedure are interpreted, where possible: ‘126’ means ‘not implemented
yet’.



the first error will be displayed on the status bar (which lies across the bottom of the BlackBox
‘program window’) and the cursor should automatically position itself next to the corresponding
grey box. We advise that you deal with any compilation errors in order, but if for some reason
this makes things awkward (or is not possible) then error messages for specific compilation errors
can be obtained by clicking on the appropriate grey boxes — a single click shows the error message
on the status bar whereas double-clicking reveals it within the code, in place of the grey box
(double-click again to revert back to the grey box).

. Once the new module has been successfully compiled (and saved) then it can be ‘linked’ into
the WinBUGS software by modifying the file WBDev/Rsrc/Distributions.odc. The first line
of this file contains the required entry for the truncated normal distribution defined in the
WBDevUnivariateTemplate module:

s ~ "dnorm.trunc0"(s, s)I(s, s) "WBDevUnivariateTemplate.Install"

The notation is described as follows: ‘s’ means that the component represents a scalar (i.e. it
is a univariate distribution) rather than a vector (v), whereas ‘~’ indicates that the compo-
nent represents a distribution as opposed to a function (<-); ‘dnorm.trunc0’ is the name cho-
sen for specifying the new distribution via the BUGS language; ‘(s, s)’ tells the system that
the distribution requires two scalar arguments as declared in the DeclareArgTypes(.) proce-
dure; ‘I(s, s)’ confirms that the I(.,.) construct, with two scalar arguments, can be ap-
plied (as is the case for all univariate distributions defined via the WBDev interface); and
‘WBDevUnivariateTemplate.Install’ is the ‘installation’ procedure for the component — this
is defined towards the bottom of the template module. Make a copy of this first line immediately
beneath it, and replace dnorm.truncO on the new line with the desired BUGS-language name for
your new distribution, e.g. dnew.distribution (this is the name with which you wish to refer
to the new distribution during future WinBUGS sessions). Now declare the new distribution’s
arguments and specify the name of the module where its ‘installation’ procedure can be found —
replace WBDevUnivariateTemplate with your new module’s name, e.g. WBDevNewDistribution.
You should end up with something like

s ~ "dnorm.truncO"(s, s)I(s, s) "WBDevUnivariateTemplate.Install"
s ~ "dnew.distribution"(s, s)I(s, s) "WBDevNewDistribution.Install"
at the top of the WBDev/Rsrc/Distributions.odc file. Now save the new

WBDev/Rsrc/Distributions.odc file — the new component will be available from the next
time that BlackBox is started, so don’t forget to shut down the software before trying to use your
new distribution. The new distribution in the illustrative example above could be accessed from
within WinBUGS via BUGS syntax similar to the following:

model {

x ~ dnew.distribution(mu, tau)

}
Good luck!



