
WinBUGS Development Interface (WBDev) – Implementing

your own functions

Dave Lunn
Imperial College School of Medicine, London, UK

d.lunn@imperial.ac.uk

September 1, 2004

1 Introduction

This document explains how you can implement arbitrarily complex logical functions in WinBUGS (1.4)
by ‘hard-wiring’ them into the system via compiled Pascal code. There are three main advantages to
doing this: first, ‘hard-wired’ functions can be evaluated much more quickly than their BUGS-language
equivalents; second, the full flexibility of a general-purpose computer language is available for specifying
the desired function, and so piecewise functions, for example, can be specified straightforwardly whereas
their specification via the BUGS language (using the step(.) function) can be somewhat awkward;
finally, the practice of hiding the details of complex logical functions within ‘hard-wired’ components
can lead to vastly simplified WinBUGS code for the required statistical model, which reduces the
likelihood of coding errors and is easier both to read and to modify. We demonstrate how to implement
such ‘hard-wired’ components via a worked example in which the following function becomes a single
element of the BUGS language.

C(t) =
{

0 t < 0
D
V

ka

ka−ke
[exp(−ket)− exp(−kat)] t ≥ 0 (1)

This is known in the field of pharmacokinetics as a “one compartment open model with first-order
absorption”. Here C(t) denotes the concentration, at time t, of drug in blood plasma following (oral)
administration of a dose D; the system parameters V , ke and ka denote the drug’s volume of distri-
bution, elimination rate constant, and (first-order) absorption rate constant, respectively. For reasons
of identifiability we parameterise the model in terms of θ′ = log(V, ke, ka − ke) – thus every possible
combination of real values (positive or negative) for the elements of θ gives rise to physically feasible
values for V , ke and ka and generates a distinct concentration-time profile.

2 System set-up

Computer code for the scalar-valued function defined in Equation 1 above can be found in the file
WBDev/Mod/ScalarTemplate.odc. This is a Component Pascal module that under normal circum-
stances, i.e. if you had written it yourself, would need to be compiled and then ‘linked’ into the core
WinBUGS software before it could be used from within the software – I have already done this for this
example, however, to aid with this exposition (see later). Before discussing the new module in detail
we provide instructions on how to set up your system so that Component Pascal code can be compiled.

1. Download BlackBox Component Builder from the following web-page:
http://www.oberon.ch/blackbox.html

1



2. Unzip the downloaded file, if necessary. Install ‘BlackBox’ by double-clicking on the Setup.exe
icon and following the instructions. The software should be installed into the new directory
Program Files/BlackBox.

3. Open My Computer (or its equivalent) and navigate to the Program Files/WinBUGS14 directory;
then press Ctrl+A (or select Select All from the Edit menu) to select all files and sub-directories
within the WinBUGS14 directory. Now press Ctrl+C (or select Copy from the Edit menu) to copy
those files and sub-directories.

4. Continue using My Computer to navigate to the Program Files/BlackBox directory and then
press Ctrl+V (or select Paste from the Edit menu) to paste the copied files and sub-directories
to this location. Select “Yes to All” if prompted about replacing existing files.

5. Now your copy of BlackBox should include the full functionality of WinBUGS 1.4 (including this
WBDev interface) within it, and so the BlackBox.exe icon on the desk-top or that in the Program
Files/BlackBox directory can be used either to run WinBUGS in the normal way or to conduct
WinBUGS development work (or even more general Component Pascal programming).

3 New module – “WBDevScalarTemplate”

Now start your copy of BlackBox and open the new module:

Program Files/BlackBox/WBDev/Mod/ScalarTemplate.odc

Note that to reduce the risk of errors creeping into the system we recommend that all other new
components are also stored in the WBDev/Mod directory. As the name suggests, the ScalarTemplate
module can be used as a template for such new components, so long as they represent scalar-valued
functions (see later for details regarding vector-valued functions). Please note that only those parts of
the code that are currently marked in blue should be modified. The following notes pertain to areas of
code labelled with the corresponding numbers within comment markers, i.e. (* and *), e.g. (* this
is a comment in Component Pascal *).

(*1*) The first line of a Component Pascal module should always read MODULE, followed by the module’s
name, in this case WBDevScalarTemplate, followed by a semi-colon. The last line of the module
should read END, followed by the module’s name, followed by a full stop (period). All new module
names for new components of this type should begin with WBDev; the corresponding file names
should be identical but with the WBDev prefix removed (they must also begin with at least one
capital letter); all new files of this type should be saved in the WBDev/Mod directory.

(*2*) Various other modules can be ‘imported’ into each new module, which means that procedures
and/or data structures defined in those modules can be used/exploited from within the new
module. The Math module is an integral part of the BlackBox software since it defines many
fundamental mathematical functions, which are called from within other modules via the syn-
tax Math. followed by the relevant procedure name, e.g. Math.Ln(.) for natural logarithms,
Math.Exp(.) for exponentials – see lines (*13*)–(*15*) and (*21*). Documentation regard-
ing the Math module can be accessed by highlighting the word Math in BlackBox and selecting
Documentation from the second Info menu (the first Info menu belongs to WinBUGS).

(*3*)–(*6*) As the name suggests, we use the DeclareArgTypes(.) procedure to declare the types of argu-
ments required to define the function of interest. In the case of our one compartment pharma-
cokinetic model defined in Eq. 1 above, the required arguments are: the parameter vector θ, the
dose D, and the time t. Thus we have a vector followed by two scalars and so we set the args
variable equal to "vss" (v for vector; s for scalar).

(*7*)–(*26*) The Evaluate procedure is used to define a variable called value, which stores the function’s
current value (given the current values of its arguments). Throughout the procedure we make
use of a variable called func, which represents the function itself. In particular, we refer several

2



times to one of its ‘internal’ fields, arguments. This is an ‘irregular’ matrix where each row corre-
sponds to one of the arguments declared in DeclareArgTypes(.) above (in the same order). If a
particular argument is a vector (v) then the length of the corresponding row of func.arguments
is equal to the length of that vector, whereas if an argument is a scalar (s) then the length of
the corresponding row is 1. The procedure call func.arguments[i][j].Value() returns the
value of the jth element of the ith argument. (Note that all array indices start at 0 in Com-
ponent Pascal rather than 1.) Thus the value of log ke, for example, can be obtained via the
call func.arguments[0][1].Value() – because log ke is the second element (index = 1) of the θ
vector, which is the function’s first argument (index = 0). On lines (*8*) and (*9*) we define
three constants that allow us to index the various rows of func.arguments via meaningful names
rather than directly by the relevant numbers themselves, i.e. we can use the names parameters,
dose and time in place of 0, 1 and 2 to access the function’s first, second and third arguments,
respectively. This is by no means essential but is considered to be ‘good practice’ as it reduces
the likelihood of coding errors arising.

(*10*)–(*11*) Note that any number of ‘local’ variables can be declared and used to aid in specifying the new
function, so long as their names do not clash with other variable/procedure names – the compiler
(Ctrl+K) will normally inform the programmer of any errors.

(*18*)–(*22*) This is a standard “IF/THEN/ELSE” statement in Component Pascal; note that the “ELSE”
branch can be omitted where appropriate – see below.

(*23*)–(*25*) This is a standard “IF” statement in Component Pascal – here we simply set equal to zero any
negligibly small values that have been calculated as negative due to (a lack of) machine precision.

Please note that (almost) every Component Pascal statement ends with a semi-colon.
Hopefully this brief example demonstrates sufficient use of the Component Pascal syntax that the
reader is able to begin writing their own modules from this template. Detailed documentation on both
BlackBox and the Component Pascal language can be accessed via the file:

Program Files/BlackBox/Docu/Help.odc

Further insight may also be gained by examining our second template, which shows how to implement
new components to represent vector-valued functions – see later. Please read the instructions below
before attempting to write your own modules.

4 Using “WBDevScalarTemplate” as a template

The following instructions should be followed closely when defining a new BUGS function via the
WBDevScalarTemplate template:

1. Choose a name for the new component, NewFunction, say (the new name must begin with a capital
letter). Start your copy of BlackBox and open the WBDev/Mod/ScalarTemplate.odc template
from within it; then save the template under the new name, e.g. WBDev/Mod/NewFunction.odc –
be careful not to overwrite an existing module! Now modify the module name both at the
top and at the bottom of the new file – change these from WBDevScalarTemplate to WBDev followed
by the new component’s name, e.g. WBDevNewFunction. Save and compile the new component by
pressing Ctrl+S (save) followed by Ctrl+K (compile) – there should be no compilation errors at
this stage since only the module name has been changed.

2. Now modify the code in the new module according to the desired function, i.e. declare the types
of arguments required on the line labelled (*5*) and redefine the Evaluate(.) procedure. You
can save the new module at any time by pressing Ctrl+S (or by selecting Save from the File
menu). You can also attempt to compile the code at any time by pressing Ctrl+K (or by selecting
Compile from the Dev menu). If there are any compilation errors when you attempt to compile
your code, each one will be marked in the code by a grey box with a white cross running through

3



it. An error message pertaining to the first error will be displayed on the status bar (which
lies across the bottom of the BlackBox ‘program window’) and the cursor should automatically
position itself next to the corresponding grey box. We advise that you deal with any compilation
errors in order, but if for some reason this makes things awkward (or is not possible) then error
messages for specific compilation errors can be obtained by clicking on the appropriate grey boxes
– a single click shows the error message on the status bar whereas double-clicking reveals it within
the code, in place of the grey box (double-click again to revert back to the grey box).

3. Once the new module has been successfully compiled (and saved) then it can be ‘linked’ into
the WinBUGS software by modifying the file WBDev/Rsrc/Functions.odc. The first line of this
file contains the required entry for the one compartment pharmacokinetic model defined in the
WBDevScalarTemplate module:

s <- "one.comp.pk.model"(v, s, s) "WBDevScalarTemplate.Install"

The notation is described as follows: ‘s’ means that the component represents a scalar as opposed
to a vector (v), whereas ‘<-’ indicates that the component represents a function as opposed to
a distribution (∼); ‘one.comp.pk.model’ is the name chosen for specifying the new function
via the BUGS language; ‘(v, s, s)’ tells the system that the function requires one vector and
two scalar arguments (in that order) as declared in the DeclareArgTypes(.) procedure; and
‘WBDevScalarTemplate.Install’ is the ‘installation’ procedure for the component – this is defined
towards the bottom of the template module. Make a copy of this first line immediately beneath
it, and replace one.comp.pk.model on the new line with the desired BUGS-language name for
your new function, e.g. new.function (this is the name with which you wish to refer to the
new function during future WinBUGS sessions). Now declare the new function’s arguments
and specify the name of the module where its ‘installation’ procedure can be found – replace
WBDevScalarTemplate with your new module’s name, e.g. WBDevNewFunction. You should end
up with something like

s <- "one.comp.pk.model"(v, s, s) "WBDevScalarTemplate.Install"
s <- "new.function"(s, v) "WBDevNewFunction.Install"

at the top of the WBDev/Rsrc/Functions.odc file. Now save the new WBDev/Rsrc/Functions.odc
file – the new component will be available from the next time that BlackBox is started, so don’t
forget to shut down the software before trying to use your new function. The new function in the
illustrative example above could be accessed from within WinBUGS via BUGS syntax similar to
the following:

model {
...
value <- new.function(x, par[1:p])
...
}
Good luck!

5 Vector-valued functions – “WBDevVectorTemplate”

Vector-valued functions can be ‘hard-wired’ into the system by making use of a different template, which
can be found in WBDev/Mod/VectorTemplate.odc. Here we define a version of our one compartment
pharmacokinetic model that is now vector-valued by virtue of the fact that we now wish to evaluate
it at a vector of times rather than a single time. Except for a few minor points discussed below, the
details of implementation are exactly analogous to those for scalar-valued functions.

(*5*) The args variable is now set equal to "vsv" rather than "vss" since the function’s third argument
has changed from a single time to a vector of times.

(*7*), (*30*) The Evaluate(.) procedure must now return an array of values, via the ‘values’ variable, rather
than a scalar (previously via ‘value’).

4



(*18*) Component Pascal’s LEN(.) function returns the length of the specified argument, so long as
that argument is a one-dimensional array: thus LEN(func.arguments[times]) is the number of
times at which the function is to be evaluated. If the array has more than one dimension then
LEN(.) returns the length of the first dimension – see the BlackBox documentation for more
details.

(*19*)–(*32*) The lines labelled (*19*), (*20*), (*31*) and (*32*) form the basic structure of a Component
Pascal WHILE-loop. (Note that INC(i) increments the value of i by one.) During each ‘pass’
through the loop, the t variable is set equal to one of the times at which the function is to
be evaluated and the corresponding evaluation is performed by making use of the ‘temporary’
variable val. At the end of each pass, values[i] (i = 0, ..., numTimes− 1) is set equal to val.

5


