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14.1 Introduction

At its core, the study of psychology is concerned with the discovery of plausible explanations for human be-
havior. For instance, one may observe that \practice makes perfect": as people become more familiar with
a task, they tend to execute it more quickly and with fewer errors. More interesting is the observation that
practice tends to improve performance such that most of the bene�t is accrued early on, a pattern of dimin-
ishing returns that is well described by a power law (Logan, 1988; but see Heathcote, Brown, & Mewhort,
2000). This pattern occurs across so many di�erent tasks (e.g., cigar rolling, maze solving, fact retrieval,
and a variety of standard psychological tasks) that it is known as the \power law of practice". Consider,
for instance, the lexical decision task, a task in which participants have to decide quickly whether a letter
string is an existing word (e.g., sunscreen) or not (e.g., tolphin). When repeatedly presented with the same
stimuli, participants show a power law decrease in their mean response latencies; in fact, they show a power
law decrease in the entire response time distribution, that is, both the fast responses and the slow responses
speed up with practice according to a power law (Logan, 1992).

The observation that practice makes perfect is trivial, but the �nd ing that practice-induced improvement
follows a general law is not. Nevertheless, the power law of practiceonly provides a descriptive summary
of the data and does not explain the reasons why practice should result in a power law improvement in
performance. In order to go beyond direct observation and statistical summary, it is necessary to bridge the
divide between observed performance on the one hand and the pertinent psychological processes on the other.
Such bridges are built from a coherent set of assumptions about the underlying cognitive processes|a theory.
Ideally, substantive psychological theories are formalized as quantitative models ( Busemeyer & Diederich,
2010; Lewandowsky & Farrell, 2010). For example, the power law of practice has been explained by instance
theory (Logan, 1992, 2002). Instance theory stipulates that earlier experiences are stored in memory as
individual traces or instances; upon presentation of a stimulus, these instances race to be retrieved, and the
winner of the race initiates a response. Mathematical analysis shows that, as instances are added to memory,
the �nishing time of the winning instance decreases as a power function. Hence, instance theory provides a
simple and general explanation of the power law of practice.

For all its elegance and generality, instance theory has not been the last word on the power law of practice.
The main reason is that single phenomena often a�ord di�erent competing explanations. For example, the
e�ects of practice can also be accounted for by Rickard's component power laws model (Rickard, 1997), An-
derson's ACT-R model (Anderson et al., 2004), Cohen et al.'s PDP model (Cohen, Dunbar, & McClelland,
1990), Ratcli�'s di�usion model ( Dutilh, Vandekerckhove, Tuerlinckx, & Wagenmakers, 2009; Ratcli� , 1978),
or Brown and Heathcote's linear ballistic accumulator model (Brown & Heathcote, 2005, 2008; Heathcote & Hayes,
2012). When various models provide competing accounts of the same data set, it can be di�cult to choose
between them. The process of choosing between models is called model comparison, model selection, or
hypothesis testing, and it is the focus of this chapter.

A careful model comparison procedure includes both qualitative and quantitative elements. Important
qualitative elements include the plausibility, parsimony, and coherence of the underlying assumptions, the
consistency with known behavioral phenomena, the ability to explainrather than describe data, and the
extent to which model predictions can be falsi�ed through experiments. Here we ignore these important
aspects and focus solely on the quantitative elements. The single most important quantitative element of
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model comparison relates to the ubiquitous tradeo� between parsimony and goodness-of-�t (Pitt & Myung ,
2002). The motivating insight is that the appeal of an excellent �t to the d ata (i.e., high descriptive adequacy)
needs to be tempered to the extent that the �t was achieved with ahighly complex and powerful model (i.e.,
low parsimony).

The topic of quantitative model comparison is as important as it is challenging; fortunately, the topic has
received|and continues to receive|considerable attention in the � eld of statistics, and the results of those
e�orts have been made accessible to psychologists through a series of recent special issues, books, and articles
(e.g., Gr•unwald , 2007; Myung, Forster, & Browne, 2000; Pitt & Myung , 2002; Wagenmakers & Waldorp,
2006). Here we discuss several procedures for model comparison, with an emphasis on minimum description
length and the Bayes factor. Both procedures entail principled and general solutions to the tradeo� between
parsimony and goodness-of-�t.

The outline of this chapter is as follows. The �rst section describes the principle of parsimony and the un-
avoidable tradeo� with goodness-of-�t. The second section summarizes the research ofWagenaar and Boer
(1987) who carried out an experiment to compare three competing multinomial processing tree models
(MPTs; Batchelder & Riefer, 1980); this model comparison exercise is used as a running example through-
out the chapter. The third section outlines di�erent methods for m odel comparison and applies them to
Wagenaar and Boer's MPT models. We focus on two popular information criteria, the AIC and the BIC,
on the Fisher information approximation of the minimum description length principle, and on Bayes factors
as obtained from importance sampling. The fourth section containsconclusions and take-home messages.

14.2 The Principle of Parsimony

Throughout history, prominent philosophers and scientists have stressed the importance of parsimony. For
instance, in the Almagest|a famous 2nd-century book on astronomy|Ptolemy writes: \We consider it a
good principle to explain the phenomena by the simplest hypotheses that can be established, provided this
does not contradict the data in an important way." Ptolemy's principle of parsimony is widely known as
Occam's razor (see Box14.1); the principle is intuitive as it puts a premium on elegance. In addition, most
people feel naturally attracted to models and explanations that are easy to understand and communicate.
Moreover, the principle also gives ground to reject propositions that are without empirical support, including
extrasensory perception, alien abductions, or mysticism. In an apocryphal interaction, Napoleon Bonaparte
asked Pierre-Simon Laplace why the latter's book on the universe didnot mention its creator, only to receive
the curt reply \I had no need of that hypothesis".

However, the principle of parsimony �nds its main motivation in the ben e�ts that it bestows those who
use models for prediction. To see this, note that empirical data areassumed to be composed of a structural,
replicable part and an idiosyncratic, non-replicable part. The former is known as the signal, and the latter
is known as the noise (Silver, 2012). Models that capture all of the signal and none of the noise provide
the best possible predictions to unseen data from the same source. Overly simplistic models, however, fail
to capture part of the signal; these models under�t the data and provide poor predictions. Overly complex
models, on the other hand, mistake some of the noise for actual signal; these models over�t the data and
again provide poor predictions. Thus, parsimony is essential because it helps discriminate the signal from
the noise, allowing better prediction and generalization to new data.

Goodness-of-�t

\From the earliest days of statistics, statisticians have begun their analysis by proposing a distribution
for their observations and then, perhaps with somewhat less enthusiasm, have checked on whether this
distribution is true. Thus over the years a vast number of test procedures have appeared, and the study of
these procedures has come to be known as goodness-of-�t" (D'Agostino & Stephens, 1986, p. v).



3

Frame 14.1: Occam's razor.

Occam's razor (sometimesOckham's) is named after the English philosopher and Franciscan friar Fa-
ther William of Occam (c.1288-c.1348), who wrote \Numquam ponendaest pluralitas sine necessitate"
(plurality must never be posited without necessity), and \Frustra �t per plura quod potest �eri per
pauciora" (it is futile to do with more what can be done with less). Occam's metaphorical razor sym-
bolizes the principle of parsimony: by cutting away needless complexity, the razor leaves only theories,
models, and hypotheses that are as simple as possible without being false. Throughout the centuries,
many other scholars have espoused the principle of parsimony; thelist predating Occam includes Aris-
totle, Ptolemy, and Thomas Aquinas (\it is super
uous to suppose that what can be accounted for by
a few principles has been produced by many"), and the list following Occam includes Isaac Newton
(\We are to admit no more causes of natural things than such as are both true and su�cient to explain
their appearances. Therefore, to the same natural e�ects we must, so far as possible, assign the same
causes."), Bertrand Russell, Albert Einstein (\Everything should b e made as simple as possible, but no
simpler"), and many others.
In the �eld of statistical reasoning and inference, Occam's razor forms the foundation for the principle
of minimum description length (Gr•unwald , 2000, 2007). In addition, Occam's razor is automatically
accommodated through Bayes factor model comparisons (e.g.,Je�reys, 1961; Je�erys & Berger, 1992;
MacKay, 2003). Both minimum description length and Bayes factors feature prominently in this chapter
as principled methods to quantify the tradeo� between parsimony and goodness-of-�t. Note that parsi-
mony plays a role even in classical null-hypothesis signi�cance testing, where the simpler null hypothesis
is retained unless the data provide su�cient grounds for its rejection.

The goodness-of-�t of a model is a quantity that expresses how well the model is able to account for a
given set of observations. It addresses the following question: Under the assumption that a certain model is
a true characterization of the population from which we have obtained a sample, and given the best �tting
parameter estimates for that model, how well does our sample of data agree with that model?

Various ways of quantifying goodness-of-�t exist. One common expression involves a Euclidean distance
metric between the data and the model's best prediction (the least squared error or LSE metric is the most
well-known of these). Another measure involves the likelihood function, which expresses the likelihood of
observing the data under the model, and is maximized by the best �tting parameter estimates (Myung,
2000).

Parsimony

Goodness-of-�t must be balanced against model complexity in order to avoid over�tting|that is, to avoid
building models that well explain the data at hand, but fail in out-of-s ample predictions. The principle of
parsimony forces researchers to abandon complex models that are tweaked to the observed data in favor of
simpler models that can generalize to new data sets.

A common example is that of polynomial regression. Figure14.1 gives a typical example. The observed
data are the circles in both the left and right panels. Crosses indicate unobserved, out-of-sample data points
to which the model should generalize. In the left panel, a quadratic function is �t to the 8 observed data
points, whereas the right panel shows a 7th order polynomial function �tted to the same data. Since a
polynomial of degree 7 can be made to contain any 8 points in the plane, the observed data are perfectly
captured by the best �tting polynomial. However, it is clear that this function generalizes poorly to the
unobserved samples, and it shows undesirable behavior for larger values ofx.

In sum, an adequate model comparison method needs to discount goodness-of-�t with model complexity.
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Figure 14.1: A polynomial regression of degreed is characterized byŷ =
P d

i =0 ai x i . This model has d + 1
free parametersai ; hence, in the right panel, a polynomial of degree 7 perfectly accounts for the 8 visible
data points. This 7th order polynomial, however, accounts poorly for the out-of-sample data points.

But how exactly can this be accomplished? As we will describe shortly,several model comparison methods
are currently in vogue; all resulting from principled ideas on how to obtain measures of generalizability1 ,
meaning that these methods attempt to quantify the extent to which a model predicts unseen data from the
same source (cf. Figure14.1). Before outlining the details of various model comparison methodswe now
introduce a data set that serves as a working example throughoutthe remainder of the chapter.

Example: Competing Models of Interference in Memory

For an example model comparison scenario, we revisit a study byWagenaar and Boer(1987) on the e�ect of
misleading information on the recollection of an earlier event. The e�ect of misleading postevent information
was �rst studied systematically by Loftus, Miller, and Burns (1978); for a review of relevant literature see
Wagenaar and Boer(1987) and references therein.

Wagenaar and Boer (1987) proposed three competing theoretical accounts of the e�ect of misleading
postevent information. To evaluate the three accounts,Wagenaar and Boerset up an experiment and in-
troduced three quantitative models that translate each of the theoretical accounts into a set of parametric
assumptions that together give rise to a probability density over the data, given the parameters.

1This terminology is due to Pitt and Myung (2002), who point out that measures often referred to as \model �t i ndices"
are in fact more than mere measures of �t to the data|they comb ine �t to the data with parsimony and hence measure
generalizability. We adopt their more accurate terminolog y here.
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Abstract Accounts

Wagenaar and Boer(1987) outlined three competing theoretical accounts of the e�ect of misleading postevent
information on memory. Loftus' destructive updating model (DUM) posits that the con
icting information
replaces and destroys the original memory. Acoexistencemodel (CXM) asserts that an inhibition mechanism
suppresses the original memory, which nonetheless remains viable though temporarily inaccessible. Finally,
a no-con
ict model (NCM) simply states that misleading postevent information is ignored, except when the
original information was not encoded or already forgotten.

Experimental Design

The experiment by Wagenaar and Boer(1987) proceeded as follows. In Phase I, a total of 562 participants
were shown a sequence of events in the form of a pictorial story involving a pedestrian-car collision. One pic-
ture in the story would show a car at an intersection, and a tra�c ligh t that was either red, yellow, or green.
In Phase II, participants were asked a set of test questions with (potentially) con
icting information: Partic-
ipants might be asked whether they remembered a pedestrian crossing the road when the car approached the
\tra�c light" (in the consistent group), the \stop sign" (in the inco nsistent group) or the \intersection" (the
neutral group). Then, in Phase III, participants were given a recognition test about elements of the story
using picture pairs. Each pair would contain one picture from Phase Iand one slightly altered version of the
original picture. Participants were then asked to identify which of the pair had featured in the original story.
A picture pair is shown in Figure 14.2, where the intersection is depicted with either a tra�c light or a stop
sign. Finally, in Phase IV, participants were informed that the correct choice in Phase III was the picture
with the tra�c light, and were then asked to recall the color of the t ra�c light. By design, this experiment
should yield di�erent response patterns depending on whether thecon
icting postevent information destroys
the original information (destructive updating model), only suppresses it temporarily (coexistence model),
or does not a�ect the original information unless it is unavailable (no-con
ict model).

Figure 14.2: A pair of pictures from the third phase (i.e., the recognition test) of (Wagenaar & Boer, 1987,
reprinted with permission), containing the critical episode at the intersection.



6

Table 14.1: Parameter point estimates fromWagenaar and Boer(1987).

p c q d s
No-con
ict model (NCM) 0.50 0.57 0.50 n/a n/a

Destructive updating model (DUM) 0.50 0.57 0.50 0.00 n/a

Coexistence model (CXM) 0.55 0.55 0.43 n/a 0.20

Concrete Models

Wagenaar and Boer(1987) developed a series of MPT models (see Box14.2) to quantify the predictions of
the three competing theoretical accounts. Figure14.3depicts the no-con
ict MPT model in the inconsistent
condition. The �gure is essentially a decision tree that is navigated from left to right. In Phase I of
the collision narrative, the tra�c light is encoded with probability p, and if so, the color is encoded with
probability c. In Phase II, the stop sign is encoded with probability q. In Phase III, the answer may be
known, or may be guessed correctly with probability 1=2, and in Phase IV the answer may be known or may
be guessed correctly with probability 1=3. The probability of each path is given by the product of all the
encountered probabilities, and the total probability of a responsepattern is the summed probability of all
branches that lead to it. For example, the total probability of gett ing both questions wrong is (1� p) � q �
2=3 + (1 � p) � (1 � q) � 1=2 � 2=3. We would then, under the no-con
ict model, expect that proportion of
participants to fall in the response pattern with two errors.

The destructive updating model (Figure 2 in Wagenaar & Boer, 1987) extends the three-parameter no-
con
ict model by adding a fourth parameter d: the probability of destroying the tra�c light information,
which may occur whenever the stop sign was encoded. The coexistence model (Figure 3 inWagenaar & Boer,
1987), on the other hand, posits an extra probability s that the tra�c light is suppressed (but not destroyed)
when the stop sign is encoded. A critical di�erence between the latter two is that a destruction step will lead
to chance accuracy in Phase IV if every piece of information was encoded, whereas a suppression step will
not a�ect the underlying memory and lead to accurate responding.Note here that if s = 0, the coexistence
model reduces to the no-con
ict model, as does the destructive updating model with d = 0. The models only
make di�erent predictions in the inconsistent condition, so that for the consistent and neutral conditions the
trees are identical.

Previous Conclusions

After �tting the three competing MPT models, Wagenaar and Boer(1987) obtained the parameter point
estimates in Table 14.1. Using a � 2 model �t index, they concluded that \a distinction among the three
model families appeared to be impossible in actual practice" (p. 304), after noting that the no-con
ict model
provides \an almost perfect �t" to the data. They propose, then , \to accept the most parsimonious model,
which is the no-con
ict model." In the remainder of this chapter, we re-examine this conclusion using various
model comparison methods.

Three Methods for Model Comparison

Many model comparison methods have been developed, all of them attempts to address the ubiquitous
tradeo� between parsimony and goodness-of-�t. Here we focuson three main classes of interrelated methods:
(1) AIC and BIC, the most popular information criteria; (2) minimum d escription length; (3) Bayes factors.
Below we provide a brief description of each method and then apply it to the model comparison problem
that confronted Wagenaar and Boer(1987).
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Figure 14.3: Multinomial processing tree representation of the inconsistent condition according to the no-
con
ict model (adapted from Wagenaar & Boer, 1987).

Information Criteria

Information criteria are among the most popular methods for model comparison. Their popularity is ex-
plained by the simple and transparent manner in which they quantify the tradeo� between parsimony and
goodness-of-�t. Consider for instance the oldest information criterion, AIC (\an information criterion"),
proposed byAkaike (1973, 1974a):

AIC = � 2 ln p
�

y j �̂
�

+ 2 k: (14.1)

The �rst term ln p
�

y j �̂
�

is the log maximum likelihood that quanti�es goodness-of-�t, where y is the data

set and �̂ the maximum-likelihood parameter estimate; the second term 2k is a penalty for model complexity,
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Frame 14.2: Popularity of multinomial processing tree models.

Multinomial processing tree models (Batchelder & Riefer, 1980; Chechile, 1973; Chechile & Meyer,
1976; Riefer & Batchelder, 1988) are psychological process models for categorical data. MPT mod-
els are used in two ways: as a psychometric tool to measure unobserved cognitive processes, and
as a convenient formalization of competing psychological theories.Over time, MPTs have been ap-
plied to a wide range of psychological tasks and processes. For instance, MPT models are avail-
able for recognition, recall, source monitoring, perception, priming, reasoning, consensus analysis,
the process dissociation procedure, implicit attitude measurement, and many other phenomena. For
more information about MPTs, we recommend the review articles byBatchelder and Riefer (1999),
Batchelder and Riefer (2007, pp. 24{32), and Erdfelder et al. (2009). The latter review article also
discusses di�erent software packages that can be used to �t MPTmodels. Necessarily missing from
that list is the recently developed RpackageMPTinR(Singmann & Kellen, in press) with which we have
good experiences. As will become apparent throughout this chapter, however, our preferred method
for �tting MPT models is Bayesian ( Chechile & Meyer, 1976; Klauer, 2010; Lee & Wagenmakers,
in press; Matzke, Dolan, Batchelder, & Wagenmakers, in press; Rouder, Lu, Morey, Sun, & Speckman,
2008; Smith & Batchelder, 2010).

measured by the number of adjustable model parametersk. The AIC estimates the expected information loss
incurred when a probability distribution f (associated with the true data-generating process) is approximated
by a probability distribution g (associated with the model under evaluation). Hence, the model with the
lowest AIC is the model with the smallest expected information loss between reality f and model g, where
the discrepancy is quanti�ed by the Kullback-Leibler divergence I (f; g ), a distance metric between two
probability distributions (for full details, see Burnham & Anderson, 2002). The AIC is unfortunately not
consistent: as the number of observations grows in�nitely large, AIC is not guaranteed to choose the true
data generating model. In fact, there is cause to believe that the AIC tends to select complex models that
over�t the data ( O'Hagan & Forster, 2004; for a discussion seeVrieze, 2012).

Another information criterion, the BIC (\Bayesian information crit erion") was proposed by Schwarz
(1978):

BIC = � 2 ln p
�

y j �̂
�

+ k ln n: (14.2)

Here, the penalty term is k ln n, where n is the number of observations.2 Hence, the BIC penalty for
complexity increases with sample size, outweighing that of AIC as soon as n � 8. The BIC was derived as
an approximation of a Bayesian hypothesis test using default parameter priors (the \unit information prior";
see below for more information on Bayesian hypothesis testing, andseeRaftery, 1995, for more information
on the BIC). The BIC is consistent: as the number of observationsgrows in�nitely large, BIC is guaranteed
to choose the true data generating model. Nevertheless, there isevidence that in practical applications the
BIC tends to select simple models that under�t the data (Burnham & Anderson, 2002).

Now consider a set of candidate models,M i ; i = 1 ; :::; m, each with a speci�c IC (AIC or BIC) value. The
model with the smallest IC value should be preferred, but the extent of this preference is not immediately ap-
parent. For better interpretation we can calculate IC model weights (Akaike, 1974b; Burnham & Anderson,
2002; Wagenmakers & Farrell, 2004); First, we compute, for each modeli , the di�erence in IC with respect
to the IC of the best candidate model:

� i = IC i � min IC : (14.3)

2Note that for hierarchical models, the de�nition of sample s ize n is more complicated ( Pauler , 1998; Raftery , 1995).
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Figure 14.4: Two representative instances of Fechner's law (left) and Steven's law (right). While Fechner's law
is restricted to nonlinear functions that level o� as stimulus intensit y increases, Steven's law can additionally
take shapes with accelerating slopes.

This step is taken to increase numerical stability, but it also serves to emphasize the point that only di�erences
in IC values are relevant. Next we obtain the model weights by transforming back to the likelihood scale
and normalizing:

wi =
exp (� � i =2)

P M
m =1 exp (� � m =2)

: (14.4)

The resulting AIC and BIC weights are called Akaike weights and Schwarz weights, respectively. These
weights not only convey the relative preference among a set of candidate models (i.e., they express a degree
to which we should prefer one model from the set as superior), butalso provide a method to combine
predictions across multiple models using model averaging (Hoeting, Madigan, Raftery, & Volinsky , 1999).

Both AIC and BIC rely on an assessment of model complexity that is relatively crude, as it is determined
entirely by the number of free parameters but not by the shape ofthe function through which they make con-
tact with the data. To illustrate the importance of the functional f orm in which the parameters participate,
consider the case of Fechner's law and Steven's law of psychophysics. Both of these laws transform objec-
tive stimulus intensity to subjective experience through a two-parameter nonlinear function.3 According to
Fechner's law, perceived intensity 	 W (I ) of stimulus I is the result of the logarithmic function k ln( I + � ).
Steven's law describes perceived intensity as an exponential function: 	 S (I ) = cI b. While both laws have
the same number of parameters, Steven's is more complex as it can cover a larger number of data patterns
(see Fig.14.4).

Application to Multinomial Processing Tree Models

In order to apply AIC and BIC to the three competing MPTs proposed by Wagenaar and Boer(1987), we
�rst need to compute the maximum log likelihood. Note that the MPT mo del parameters determine the
predicted probabilities for the di�erent response outcome categories (cf. Figure 14.3 and Box 14.2); these
predicted probabilities are deterministic parameters from a multinomial probability density function. Hence,
the maximum log likelihood parameter estimates for an MPT model produce multinomial parameters that
maximize the probability of the observed data (i.e., the occurrence of the various outcome categories).

Several software packages exist that can help �nd the maximum loglikelihood parameter estimates for
MPTs (e.g. Singmann & Kellen, in press). With these estimates in hand, we can compute the information

3For a more in-depth treatment, see Townsend (1975).



10

Table 14.2: AIC and BIC for the Wagenaar & Boer MPT models.

log likelihood k AIC wAIC BIC wBIC
No-con
ict model (NCM) � 24.41 3 54.82 0.41 67.82 0.86

Destructive updating model (DUM) � 24.41 4 56.82 0.15 74.15 0.04
Coexistence model (CXM) � 23.35 4 54.70 0.44 72.03 0.10

Note: k is the number of free parameters.

criteria described in the previous section. Table14.2shows the maximum log likelihood as well as AIC, BIC,
and their associated weights (wAIC and wBIC; from Equation 14.4).

Interpreting wAIC and wBIC as measures of relative preference,we see that the results in Table14.2are
mostly inconclusive. According to wAIC, the no-con
ict model and coexistence model are virtually indistin-
guishable, though both are preferable to the destructive updating model. According to wBIC, however, the
no-con
ict model should be preferred over both the destructiveupdating model and the coexistence model.
The extent of this preference is noticeable but not decisive.

Minimum Description Length

The minimum description length principle is based on the idea that statistical inference centers around
capturing regularity in data; regularity, in turn, can be exploited to compress the data. Hence, the goal
is to �nd the model that compresses the data the most (Gr•unwald , 2007). This is related to the con-
cept of Kolmogorov complexity|for a sequence of numbers, Kolmogorov complexity is the length of the
shortest program that prints that sequence and then halts (Gr•unwald , 2007). Although Kolmogorov com-
plexity cannot be calculated, a suite of concrete methods are available based on the idea of model selection
through data compression. These methods, most of them developed by Jorma Rissanen, fall under the gen-
eral heading of minimum description length (MDL; Rissanen, 1978, 1987, 1996, 2001). In psychology, the
MDL principle has been applied and promoted primarily by Gr•unwald (2000), Gr•unwald, Myung, and Pitt
(2005), and Gr•unwald (2007), as well as Myung, Navarro, and Pitt (2006), Pitt and Myung (2002), and
Pitt, Myung, and Zhang (2002).

Here we mention three versions of the MDL principle. First, there is the so-calledcrude two-part code
(Gr•unwald , 2007); here, one sums the description of the model (in bits) and the description of the data
encoded with the help of that model (in bits). The penalty for complex models is that they take many bits
to describe, increasing the summed code length. Unfortunately, itcan be di�cult to de�ne the number of
bits required to describe a model.

Second, there is the Fisher information approximation (FIA; Pitt et al. , 2002; Rissanen, 1996):

FIA = � ln p
�

y j �̂
�

+
k
2

ln
� n

2�

�
+ ln

Z

�

p
det [I (� )] d�; (14.5)

whereI (� ) denotes the Fisher information matrix of sample size 1 (Ly, Verhagen, & Wagenmakers, in preparation).
I (� ) is a k � k matrix whose (i; j )th element is

I i;j (� ) = E
�

@ln p (y j � )
@�i

@ln p (y j � )
@�j

�
;

where E() is the expectation operator.
Note that FIA is similar to AIC and BIC in that it includes a �rst term tha t represents goodness-of-�t,

and additional terms that represent a penalty for complexity. The second term resembles that of BIC, and
the third term re
ects a more sophisticated penalty that represents the number of distinguishable probability
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Table 14.3: Minimum description length values for the Wagenaar & BoerMPT models.

Complexity FIA wFIA
No-con
ict model (NCM) 6.44 30.86 0.44

Destructive updating model (DUM) 7.39 31.80 0.17
Coexistence model (CXM) 7.61 30.96 0.39

distributions that a model can generate (Pitt et al. , 2002). Hence, FIA di�ers from AIC and BIC in that
it also accounts for functional form complexity, not just complexity due to the number of free parameters.
Note that FIA weights (or Rissanen weights) can be obtained by multiplying FIA by 2 and then applying
Equations 14.3 and 14.4.

The third version of the MDL principle discussed here is normalized maximum likelihood (NML; Myung et al.,
2006; Rissanen, 2001):

NML =
p

�
y j �̂ (y)

�

R
X p

�
x j �̂ (x)

�
dx

: (14.6)

This equation shows that NML tempers the enthusiasm about a good�t to the observed data y (i.e., the
numerator) to the extent that the model could also have provided a good �t to random data x (i.e., the
denominator). NML is simple to state but can be di�cult to compute; f or instance, the denominator may be
in�nite and this requires further measures to be taken (for details seeGr•unwald , 2007). Additionally, NML
requires an integration over the entire set of possible data sets, which may be di�cult to de�ne as it depends
on unknown decision processes in the researchers (Berger & Berry, 1988). Note that, since the computation
of NML depends on the likelihood of data that might have occurred but did not, the procedure violates the
likelihood principle, which states that all information about a parameter � obtainable from an experiment is
contained in the likelihood function for � for the given y (Berger & Wolpert , 1988).

Application to Multinomial Processing Tree Models

Using the parameter estimates from Table14.1and the code provided byWu, Myung, and Batchelder (2010),
we can compute the FIA for the three competing MPT models considered by Wagenaar and Boer(1987).4

Table 14.3displays, for each model, the FIA along with its associated complexitymeasure (the other one of
its two constituent components, the maximum log likelihood, can be found in Table 14.2). The conclusions
from the MDL analysis mirror those from the AIC measure, expressing a slight disfavor for the destructive
updating model, and approximately equal preference for the no-con
ict model versus the coexistence model.

Bayes Factors

In Bayesian model comparison, the posterior odds for modelsM 1 and M 2 are obtained by updating the
prior odds with the diagnostic information from the data:

p(M 1 j y)
p(M 2 j y)

=
p(M 1)
p(M 2)

�
m (y j M 1)
m (y j M 2)

: (14.7)

Equation 14.7shows that the change from prior oddsp(M 1)=p(M 2) to posterior odds p(M 1 j y)=p(M 2 j y)
is given by the ratio of marginal likelihoods m (y j M 1)=m (y j M 2) (see below for the de�nition of the
marginal likelihood). This ratio is known as the Bayes factor (Je�reys, 1961; Kass & Raftery, 1995). The

4Analysis using the MPTinRpackage by Singmann and Kellen (in press) gave virtually identical results. Technical details for
the computation of the NML for MPTs are provided in Appendix B of Klauer and Kellen (2011).
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Table 14.4: Evidence categories for the Bayes factorBF 12 (based onJe�reys, 1961).

Bayes factor BF 12 Interpretation
> 100 Extreme evidence forM 1

30 | 100 Very Strong evidence for M 1

10 | 30 Strong evidence for M 1

3 | 10 Moderate evidence for M 1

1 | 3 Anecdotal evidence for M 1

1 No evidence
1/3 | 1 Anecdotal evidence for M 2

1/10 | 1/3 Moderate evidence for M 2

1/30 | 1/10 Strong evidence for M 2

1/100 | 1/30 Very Strong evidence for M 2

< 1/100 Extreme evidence forM 2

log of the Bayes factor is often interpreted as the weight of evidence provided by the data (Good, 1985; for
details seeBerger & Pericchi, 1996; Bernardo & Smith, 1994; Gill , 2002; O'Hagan, 1995).

Thus, when the Bayes factorBF 12 = m (y j M 1)=m (y j M 2) equals 5, the observed datay are 5 times
more likely to occur under M 1 than under M 2; when BF 12 equals 0:1, the observed data are 10 times more
likely under M 2 than under M 1. Even though the Bayes factor has an unambiguous and continuous scale,
it is sometimes useful to summarize the Bayes factor in terms of discrete categories of evidential strength.
Je�reys (1961, Appendix B) proposed the classi�cation scheme shown in Table 14.4. We replaced the labels
\not worth more than a bare mention" with \anecdotal", \decisive" with \extreme", and \substantial" with
\moderate". These labels facilitate scienti�c communication but should be considered only as an approximate
descriptive articulation of di�erent standards of evidence.

Bayes factors negotiate the tradeo� between parsimony and goodness-of-�t and implement an automatic
Occam's razor (Je�erys & Berger, 1992; MacKay, 2003; Myung & Pitt , 1997). To see this, consider that
the marginal likelihood m (y j M ( � ) ) can be expressed as

R
� p(y j �; M ( � ) )p(� j M ( � ) ) d� : an average across

the entire parameter space, with the prior providing the averagingweights. It follows that complex models
with high-dimensional parameter spaces are not necessarily desirable|large regions of the parameter space
may yield a very poor �t to the data, dragging down the average. The marginal likelihood will be highest
for parsimonious models that use only those parts of the parameter space that are required to provide an
adequate account of the data (Lee & Wagenmakers, in press). By using marginal likelihood the Bayes factor
punishes models that hedge their bets and make vague predictions.Models can hedge their bets in di�erent
ways: by including extra parameters, by assigning very wide prior distributions to the model parameters, or
by using parameters that participate in the likelihood through a complicated functional form. By computing
a weighted average likelihood across the entire parameter space, the marginal likelihood (and, consequently,
the Bayes factor) automatically takes all these aspects into account.

Bayes factors represent \the standard Bayesian solution to thehypothesis testing and model selection
problems" (Lewis & Raftery, 1997, p. 648) and \the primary tool used in Bayesian inference for hypothesis
testing and model selection" (Berger, 2006, p. 378), but their application is not without challenges (Box 14.3).
Below we show how these challenges can be overcome for the general class of MPT models. Next we compare
the results of our Bayes factor analysis with those of the other model comparison methods using Je�reys
weights (i.e., normalized marginal likelihoods).
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Frame 14.3: Two challenges for Bayes factors.

Bayes factors (Je�reys, 1961; Kass & Raftery, 1995) come with two main challenges, one practical and
one conceptual. The practical challenge arises because Bayes factors are de�ned as the ratio of two
marginal likelihoods, each of which requires integration across the entire parameter space. This inte-
gration process can be cumbersome and hence the Bayes factor can be di�cult to obtain. Fortunately,
there are many approximate and exact methods to facilitate the computation of the Bayes factor (e.g.,
Ardia, Ba�st•urk, Hoogerheide, & van Dijk , 2012; Chen, Shao, & Ibrahim, 2002; Gamerman & Lopes,
2006); in this chapter we focus on BIC (a crude approximation), the Savage-Dickey density ratio (applies
only to nested models) and importance sampling. The conceptual challenge that Bayes factors bring
is that the prior on the model parameters has a pronounced and lasting in
uence on the result. This
should not come as a surprise: the Bayes factor punishes models for needless complexity, and the com-
plexity of a model is determined in part by the prior distributions that are assigned to the parameters.
The di�culty arises because researchers are often not very con�dent about the prior distributions that
they specify. To overcome this challenge one can either spend moretime and e�ort on the speci�cation
of realistic priors, or else one can choose default priors that ful�ll general desiderata (e.g.,Je�reys, 1961;
Liang, Paulo, Molina, Clyde, & Berger, 2008). Finally, the robustness of the conclusions can be veri�ed
by conducting a sensitivity analysis in which one examines the e�ect ofchanging the prior speci�cation
(e.g., Wagenmakers, Wetzels, Borsboom, & van der Maas, 2011).

Application to Multinomial Processing Tree Models

In order to compute the Bayes factor we seek to determine each model's marginal likelihood m (y j M ( � ) ).
As indicated above, the marginal likelihoodm (y j M ( � ) ) is given by integrating the likelihood over the prior:

m (y j M ( � ) ) =
Z

p
�
y j �; M ( � )

�
p

�
� j M ( � )

�
d�: (14.8)

The most straightforward manner to obtain m (y j M ( � ) ) is to draw samples from the prior p(� j M ( � ) ) and
average the corresponding values forp(y j �; M ( � ) ):

m (y j M ( � ) ) �
1
N

NX

i =1

p
�
y j � i ; M ( � )

�
; � i � p(� ): (14.9)

For MPT models, this brute force integration approach may often be adequate. An MPT model usually has
few parameters, and each is conveniently bounded from 0 to 1. However, brute force integration is ine�cient,
particularly when the posterior is highly peaked relative to the prior: in this case, draws fromp(� j M ( � ) )
tend to result in low likelihoods and only few chance draws may have highlikelihood. This problem can be
overcome by a numerical technique known asimportance sampling (Hammersley & Handscomb, 1964).

In importance sampling, e�ciency is increased by drawing samples from an importance density g(� )
instead of from the prior p(� j M ( � ) ). Consider an importance densityg(� ). Then,

m (y j M ( � ) ) =
Z

p
�
y j �; M ( � )

�
p

�
� j M ( � )

� g(� )
g(� )

d�

=
Z

p
�
y j �; M ( � )

�
p

�
� j M ( � )

�

g(� )
g(� ) d�

�
1
N

NX

i =1

p
�
y j � i ; M ( � )

�
p

�
� i j M ( � )

�

g(� i )
; � i � g(� ):

(14.10)
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Frame 14.4: Importance sampling for MPT models using the Beta mixture method.

Importance sampling was invented by Stan Ulam and John von Neumann. Here we use it to estimate
the marginal likelihood by repeatedly drawing samples and averaging|the samples are, however, not
drawn from the prior (as per Equation 14.9, the brute force method), but instead they are drawn
from some convenient densityg(� ) (as per Equation 14.10; Andrieu, De Freitas, Doucet, & Jordan,
2003; Hammersley & Handscomb, 1964). The parameters in MPT models are constrained to the unit
interval, and therefore the family of Beta distributions is a natural candidate for g(� ). The middle panel
of Figure 14.5shows an importance density (dashed line) for MPT parameterc in the no-con
ict model
for the data from Wagenaar and Boer(1987). This importance density is a Beta distribution that was
�t to the posterior distribution for c using the method of moments. The importance density provides a
good description of the posterior (the dashed line tracks the posterior almost perfectly) and therefore
is more e�cient than the brute force method illustrated in the left pa nel of Figure 14.5, which uses the
prior as the importance density. Unfortunately, Beta distribution s do not always �t MPT parameters
so well; speci�cally, the Beta importance density may sometimes havetails that are thinner than the
posterior, and this increases the variability of the marginal likelihood estimate. To increase robustness
and ensure that the importance density has relatively fat tails we can use a Beta mixture, shown in the
right panel of Figure 14.5. The Beta mixture consists of a uniform prior component (i.e., the Beta(1; 1)
prior as in the left panel) and a Beta posterior component (i.e., a Betadistribution �t to the posterior,
as in the middle panel). In this example, the mixture weight for the uniform component is w = 0 :2.
Small mixture weights retain the e�ciency of the Beta posterior app roach but avoid the extra variability
due to thin tails. It is possible to increase e�ciency further by specifying a multivariate importance
density, but the present univariate approach is intuitive, easy to implement, and appears to work well
in practice. The accuracy of the estimate can be con�rmed by increasing the number of draws from the
importance density, and by varying the w parameter.

Note that if g(� ) = p(� j M ( � ) ) the importance sampler reduces to the brute force integration shown in
Equation 14.9. Also note that if g(� ) = p(� j y; M ( � ) ), a single draw su�ces to determine p(y) exactly.

In sum, when the importance density equals the prior we have bruteforce integration, and when it equals
the posterior we have a zero-variance estimator. However, in order to compute the posterior, we would
have to be able to compute the normalizing constant (i.e., the marginal likelihood), which is exactly the
quantity we wish to determine. In practice then, we want to use an importance density that is similar to the
posterior, is easy to evaluate, and is easy to draw samples from. Inaddition, we want to use an importance
density with tails that are not thinner than those of the posterior; thin tails cause the estimate to have
high variance. These desiderata are met by theBeta mixture importance density described in Box14.4: a
mixture between a Beta(1; 1) density and a Beta density that provides a close �t to the posterior distribution.
Here we use a series of univariate Beta mixtures, one for each separate parameter, but acknowledge that a
multivariate importance density is potentially even more e�cient as it a ccommodates correlations between
the parameters.

In our application to MPT models, we assume that all model parameters have uniform Beta(1; 1) priors.
For most MPT models this assumption is fairly uncontroversial. The uniform priors can be thought of as
a default choice; in the presence of strong prior knowledge one cansubstitute more informative priors. The
uniform priors yield a default Bayes factor that can be a referencepoint for an analysis with more informative
priors, if such an analysis is desired (i.e., when reliable prior informationis available, such as can be elicited
from experts or derived from earlier experiments).
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Figure 14.5: Three di�erent importance sampling densities (dashed lines) for the posterior distribution (solid
lines) of the c parameter in the no-con
ict model as applied to the data from Wagenaar and Boer(1987).
Left panel: a uniform Beta importance density (i.e., the brute forcemethod); middle panel: a Beta posterior
importance density (i.e., a Beta distribution that provides the best � t to the posterior); right panel: a Beta
mixture importance density (i.e., a mixture of the uniform Beta density and the Beta posterior density, with
a mixture weight w = 0 :2 on the uniform component).

Monte Carlo sampling for the posterior distribution Before turning to the results of the Bayes fac-
tor model comparison we �rst inspect the posterior distributions. The posterior distributions were approx-
imated using Markov chain Monte Carlo sampling implemented in JAGS (Plummer, 2003) and WinBUGS
(Lunn, Jackson, Best, Thomas, & Spiegelhalter, 2012).5 All code is available on the authors' websites. Con-
vergence was con�rmed by visual inspection and theR̂ statistic ( Gelman & Rubin, 1992). The top panel
of Figure 14.6 shows the posterior distributions for the no-con
ict model. Althou gh there is slightly more
certainty about parameter p than there is about parametersq and c, the posterior distributions for all three
parameters are relatively wide considering that they are based on data from as many as 562 participants.

The middle panel of Figure 14.6 shows the posterior distributions for the destructive-updating model.
It is important to realize that when d = 0 (i.e., no destruction of the earlier memory) the destructive-
updating model reduces to the no-con
ict model. Compared to theno-con
ict model, parameters p, q,
and c show relatively little change. The posterior distribution for d is very wide, indicating considerable
uncertainty about its true value. A frequentist point-estimate yie lds d̂ = 0 ( Wagenaar & Boer, 1987; see also
Table 14.1), but this does not convey the fact that this estimate is highly uncertain.

The lower panel of Figure 14.6 shows the posterior distributions for the coexistence model. When
s = 0 (i.e., no suppression of the earlier memory), the coexistence model reduces to the no-con
ict model.
Compared to the no-con
ict model and the destructive-updating model, parametersp, q, and c again show
relatively little change. The posterior distribution for s is very wide, indicating considerable uncertainty
about its true value.

The fact that the no-con
ict model is nested under both the destructive-updating model and the no-

5The second author used WinBUGS, the �rst and third authors us ed JAGS.
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Figure 14.6: Posterior distributions for the parameters of the no-con
ict MPT model, the destructive updat-
ing MPT model, and the coexistence MPT model, as applied to the data from Wagenaar and Boer(1987).

con
ict model allows us to inspect the extra parametersd and s and conclude that we have not learned
very much about their true values. This suggests that, despite having tested 562 participants, the data do
not �rmly support one model over the other. We will now see how Bayes factors can make this intuitive
judgment more precise.

Importance sampling for the Bayes factor We applied the Beta mixture importance sampling method
to estimate marginal likelihoods for the three models under consideration. The results were con�rmed by
varying the mixture weight w, by independent implementations by the authors, and by comparison to the
Savage-Dickey density ratio test presented later. Table14.5 shows the results.

From the marginal likelihoods and the Je�reys weights we can derive the Bayes factors for the pair-wise
comparisons; the Bayes factor is 2:77 in favor of the no-con
ict model over the destructive updating model,
the Bayes factor is 1:39 in favor of the coexistence model over the no-con
ict model, and the Bayes factor
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Table 14.5: Bayesian evidence (i.e., the logarithm of the marginal likelihood), Je�reys weights, and pair-
wise Bayes factors computed from the Je�reys weights or through the Savage-Dickey density ratio, for the
Wagenaar & Boer MPT models.

Bayesian Je�reys Bayes factor (Savage-Dickey)
evidence weight over NCM over DUM over CXM

No-con
ict model (NCM) � 30.55 0.36 1 2.77 (2.81) 0.72 (0.80)
Destructive updating model (DUM) � 31.57 0.13 0.36 (0.36) 1 0.26 (0.28� )

Coexistence model (CXM) � 30.22 0.51 1.39 (1.25) 3.86 (3.51� ) 1
� Derived through transitivity: 2 :81 � 1=0:80 = 3:51.

is 3:86 in favor of the coexistence model over the destructive updating model. The �rst two of these Bayes
factors are anecdotal or \not worth more than a bare mention" (Je�reys, 1961), and the third one just
makes the criterion for \moderate" evidence, although any enthusiasm about this level of evidence should be
tempered by the realization that Je�reys himself described a Bayesfactor as high as 5.33 as \odds that would
interest a gambler, but would be hardly worth more than a passing mention in a scienti�c paper" ( Je�reys,
1961, pp. 256-257). In other words, the Bayes factors are consistent with the intuitive visual assessment of
the posterior distributions: the data do not allow us to draw strong conclusions.

We should stress that Bayes factors apply to a comparison of any two models, regardless of whether
or not they are structurally related or nested (i.e., where one model is a special, simpli�ed version of
a larger, encompassing model). As is true for the information criteria and minimum description length
methods, Bayes factors can be used to compare structurally very di�erent models, such as for example REM
(Shi�rin & Steyvers , 1997) versus ACT-R (Anderson et al., 2004), or the di�usion model ( Ratcli� , 1978)
versus the linear ballistic accumulator model (Brown & Heathcote, 2008). In other words, Bayes factors can
be applied to nested and non-nested models alike. For the models under consideration, however, there exists
a nested structure that allows one to obtain the Bayes factor through a computational shortcut.

The Savage-Dickey approximation to the Bayes factor for com paring nested models Consider
�rst the comparison between the no-con
ict model M NCM and the destructive updating model M DUM . As
shown above, we can obtain the Bayes factor forM NCM versusM DUM by computing the marginal likelihoods
using importance sampling. However, because the models are nested we can also obtain the Bayes factor by
considering onlyM DUM , and dividing the posterior ordinate at d = 0 by the prior ordinate at d = 0. This sur-
prising result was �rst published by Dickey and Lientz (1970), who attributed it to Leonard J. \Jimmie" Sav-
age. The result is now generally known as theSavage-Dickey density ratio(e.g., Dickey, 1971; for extensions
and generalizations seeChen, 2005; Verdinelli & Wasserman, 1995; Wetzels, Grasman, & Wagenmakers,
2010; for an introduction for psychologists seeWagenmakers, Lodewyckx, Kuriyal, & Grasman, 2010; a short
mathematical proof is presented inO'Hagan & Forster, 2004, pp. 174-177).6 Thus, we can exploit the fact
that M NCM is nested inM DUM and use the Savage-Dickey density ratio to obtain the Bayes factor:

BF NCM ;DUM =
m (y j M NCM )
m (y j M DUM )

=
p(d = 0 j y; M DUM )
p(d = 0 j M DUM )

: (14.11)

The Savage-Dickey density ratio test is visualized in Figure14.7; the posterior ordinate at d = 0 is
higher than the prior ordinate at d = 0, indicating that the data have increased the plausibility that
d equals 0. This means that the data support M NCM over M DUM . The prior ordinate equals 1, and
hence BF NCM ;DUM simply equals the posterior ordinate at d = 0. A nonparametric density estimator

6Note that the Savage-Dickey density ratio requires that whe n d = 0 the prior for the common parameters p, c, and q is the
same for M DUM and M NCM . That is, p(p; c; q j d = 0 ; M DUM ) = p(p; c; q j M NCM ).
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Figure 14.7: Illustration of the Savage-Dickey density ratio test. The dashed and solid lines show the prior
and the posterior distribution for parameter d in the destructive updating model. The black dots indicate
the height of the prior and the posterior distributions at d = 0.

(Stone, Hansen, Kooperberg, & Truong, 1997) that respects the bound at 0 yields an estimate of 2:81. This
estimate is close to 2:77, the estimate from the importance sampling approach.

The Savage-Dickey density ratio test can be applied similarly to the comparison between the no-con
ict
model M NCM versus the coexistence modelM CXM , where the critical test is at s = 0. Here the posterior
ordinate is estimated to be 0:80, and hence the Bayes factor forM CXM over M NCM equals 1=0:80 = 1:25,
close to the Bayes factor obtained through importance sampling,BF CXM ;NCM = 1 :39.

With these two Bayes factors in hand, we can immediately derive the Bayes factor for the comparison
between the destructive updating modelM DUM versus the coexistence modelM CXM through transitivity,
that is, BF CXM ;DUM = BF NCM ;DUM � BF CXM ;NCM . Alternatively, we can also obtain BF CXM ;DUM by directly
comparing the posterior density for d = 0 against that for s = 0:

BF CXM ;DUM = BF NCM ;DUM � BF CXM ;NCM

=
p(d = 0 j y; M DUM )
p(d = 0 j M DUM )

�
p(s = 0 j M CXM )

p(s = 0 j y; M CXM )

=
p(d = 0 j y; M DUM )
p(s = 0 j y; M CXM )

;

(14.12)

where the second step is allowed because we have assigned uniform priors to both d and s, so that p(d =
0 j M DUM ) = p(s = 0 j M CXM ). Hence, the Savage-Dickey estimate for the Bayes factor between the two
non-nested modelsM DUM and M CXM equals the ratio of the posterior ordinates atd = 0 and s = 0, resulting
in the estimate BF CXM ;DUM = 3 :51, close to the importance sampling result of 3:86.
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Comparison of Model Comparisons

We have now implemented and performed a variety of model comparison methods for the three competing
MPT models introduced by Wagenaar and Boer(1987): we computed and interpreted the Akaike information
criteria (AIC), Bayesian information criteria (BIC), the Fisher info rmation approximation of the minimum
description length principle (FIA), and two computational implement ations of the Bayes factor (BF).

The general tenor across most of the model comparison exercises has been that the data do not con-
vincingly support one particular model. However, the destructive updating model is consistently ranked the
worst of the set. Looking at the parameter estimates, it is not di�c ult to see why this is so: thed parameter
of the destructive updating model (i.e., the probability of destroying memory through updating) is estimated
at 0, thereby reducing the destructive updating model to the no-con
ict model, and yielding an identical
�t to the data (as can be seen in the likelihood column of Table 14.2). Since the no-con
ict model counts
as a special case of the destructive updating model, it is by necessity less complex from a model selection
point of view|the d parameter is an unnecessary entity, the inclusion of which is not warranted by the data.
This is re
ected in the inferior performance of the destructive updating model according to all measures of
generalizability.

Note that the BF judges the support for NCM to be `anecdotal' even though NCM and DUM provide
similar �t and have a clear di�erence in complexity|one might expect th e principle of parsimony to tell us
that, given the equal �t and clear complexity di�erence, there is massive evidence for the simpler model,
and the BF appears to fail to implement Occams razor here. The lackof clear support of the NCM over
the DUM is explained by the considerable uncertainty regarding the value of the parameterd: even though
the posterior mode is at d = 0, much posterior variability is visible in the middle panel of Fig. 14.6. With
more data and a posterior ford that is more peaked near 0, the evidence in favor of the simpler model would
increase.

The di�erence between the no-con
ict model and the coexistencemodel is less clear-cut. Following AIC,
the two models are virtually indistinguishable|compared to the coexis tence model, the no-con
ict model
sacri�ces one unit of log-likelihood for two units of complexity (one parameter). As a result, both models
perform equally well under the AIC measure. Under the BIC measure, however, the penalty for the number
of free parameters is more substantial, and here the no-con
ict model trades a unit of log likelihood for
log(N ) = 6 :33 units of complexity, outdistancing both the destructive updating model and the coexistence
model. The BIC is the exception in clearly preferring the no-con
ict model over the coexistence model. The
MDL, like the AIC, would have us hedge on the discriminability of the no-con
ict model and the coexistence
model.

The BF, �nally, allows us to express evidence for the models using standard probability theory. Between
any two models, the BF tells us how much the balance of evidence has shifted due to the data. Using two
methods of computing the BF, we determined that the odds of the coexistence model over the destructive
updating model almost quadrupled (BF CXM ;DUM � 3:86), but the odds of the coexistence model over the
no-con
ict model barely shifted at all ( BF CXM ;NCM � 1:39). Finally, we can use the same principles of
probability to compute Je�reys weights, which express, for each model under consideration, the probability
that it is true, assuming prior indi�erence. Furthermore, we can easily recompute the probabilities in case
we wish to express a prior preference between the candidate models (for example, we might use the prior to
express a preference for sparsity, as was originally proposed byJe�reys, 1961).

Concluding Comments

Model comparison methods need to implement the principle of parsimony: goodness-of-�t has to be dis-
counted to the extent that it was accomplished by a model that is overly complex. Many methods of
model comparison exist (Myung et al., 2000; Wagenmakers & Waldorp, 2006), and our selective review fo-
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Anscombe's Quartet

Figure 14.8: Anscombe's Quartet is a set of four bivariate data setswhose basic descriptive statistics are
approximately identical. In all cases, mean ofX is 9, variance ofX is 11, mean ofY is 7.5, variance ofY is
4.1, and the best �tting linear regression line isyest

i = 3 + 0 :5x i , which explains R2 = 66:6% of the variance
in Y . However, in two of the four cases, the linear regression is clearly apoor account of the data. The
relative measure of model �t (R2) gives no indication of this radical di�erence between the data sets, and
an absolute measure of �t (even one as rudimentary as a visual inspection of the regression line) is required.
(Figure downloaded from Flickr, courtesy of Eric-Jan Wagenmakers.)

cused on methods that are popular, easy-to-compute approximations (i.e., AIC and BIC) and methods
that are di�cult-to-compute \ideal" solutions (i.e., minimum descriptio n length and Bayes factors). We
applied these model comparison methods to the scenario of three competing MPT models introduced by
Wagenaar and Boer (1987). Despite collecting data from 562 participants, the model comparison meth-
ods indicate that the data are somewhat ambiguous; at any rate, the data do not support the destructive
updating model. This echoes the conclusions drawn byWagenaar and Boer(1987).

It is important to note that the model comparison methods discusses in this chapter can be applied
regardless of whether the models are nested. This is not just a practical nicety; it also means that the
methods are based on principles that transcend the details of a speci�c model implementation. In our
opinion, a method of inference that is necessarily limited to the comparison of nested models is incomplete
at best and misleading at worst. It is also important to realize that model comparison methods arerelative
indices of model adequacy; when, say, the Bayes factor expresses an extreme preference for model A over
model B, this does not mean that model A �ts the data at all well. Figu re 14.8shows a classic but dramatic
example of the inadequacy of simple measures of relative model �t.

Because it would be a mistake to base inference on a model that fails to describe the data, a complete
inference methodology features both relative and absolute indicesof model adequacy. For the MPT models
under consideration here,Wagenaar and Boer(1987) reported that the no-con
ict model provided \an almost
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perfect �t" to the data. 7

The example MPT scenario considered here was relatively straightforward. More complicated MPT mod-
els contain order-restrictions, feature individual di�erences embedded in a hierarchical framework (Klauer,
2010; Matzke et al., in press), or contain a mixture-model representation with di�erent latent classes of par-
ticipants (for application to other models seeScheibehenne, Rieskamp, & Wagenmakers, 2013; Fr•uhwirth{Schnatter ,
2006). In theory, it is relatively easy to derive Bayes factors for thesemore complicated models. In practice,
however, Bayes factors for complicated models may require the use of numerical techniques more involved
than importance sampling. Nevertheless, for standard MPT modelsthe Beta mixture importance sampler
appears to be a convenient and reliable tool to obtain Bayes factors. We hope that this methodology will
facilitate the principled comparison of MPT models in future applications.
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Glossary

Akaike's information criterion (AIC) A quantity that expresses the generalizability of a model, based
on the likelihood of the data under the model and the number of freeparameters in the model.

Akaike weights A quantity that conveys the relative preference among a set of candidate models, using
AIC as a measure of generalizability.

Anscombe's quartet A set of four bivariate data sets whose statistical properties arevirtually indistin-
guishable until they are displayed graphically, and a canonical example of the importance of data
visualization.

Bayes factor (BF) A quantity that conveys the degree to which the observed data sway our beliefs towards
one or the other model. Under a-priori indi�erence between two modelsM 1 and M 2, the BF expresses
the a-posteriori relative probability of the two.

Bayesian information criterion (BIC) A quantity that expresses the generalizability of a model, based
on the likelihood of the data under the model, the number of free parameters in the model, and the
amount of data.

Fisher information approximation (FIA) One of several approximations used to compute the MDL.

Goodness-of-�t A quantity that expresses how well a model is able to account for a given set of observa-
tions.

Importance sampling A numerical algorithm to e�ciently draw samples from a distribution by factoring
it into an easy-to-compute function over an easy-to-sample fromdensity.

Je�reys weights A quantity that conveys the relative preference among a set of candidate models, using
BF as a measure of generalizability.

7We con�rmed the high quality of �t in a Bayesian framework usi ng posterior predictives ( Gelman & Hill , 2007), results not
reported here.
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Likelihood principle A principle of modeling and statistics which states that all information about a
certain parameter that is obtainable from an experiment is contained in the likelihood function of that
parameter for the given data. Many common statistical procedures, such as hypothesis testing with
p-values, violate this principle.

Minimum description length (MDL) A quantity that expresses the generalizability of a model, based
on the extent to which the model allows the observed data to be compressed.

Monte Carlo sampling A general class of numerical algorithms used to characterize (i.e., compute de-
scriptive measures) an arbitrary distribution by drawing large numbers of random samples from it.

Nested models Model M 1 is nested in ModelM 2 if there exists a special case ofM 2 that is equivalent
to M 1.

Over�tting A pitfall of modeling whereby the proposed model is too complex and begins to account for
irrelevant particulars (i.e., random noise) of a speci�c data set, causing the model to poorly generalize
to other data sets.

Parsimony A strategy against over�tting, and a fundamental principle of mod el selection: all other things
being equal, simpler models should be preferred over complex ones; or: greater model complexity must
be bought with greater explanatory power. Often referred to asOccam's razor.

Rissanen weights A quantity that conveys the relative preference among a set of candidate models, using
FIA as a measure of generalizability.

Savage-Dickey density ratio An e�cient method for computing a Bayes factor between nested models.

Schwartz weights A quantity that conveys the relative preference among a set of candidate models, using
BIC as a measure of generalizability.
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