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Abstract People tend to slow down after they make arKeywords Response cautiofResponse time

error. This phenomenon, generally referred tpas-error  distributions Cognitive control and automaticitiffusion
slowing has been hypothesized to reflect perceptuahodel decompositioriexical decision

distraction, time wasted on irrelevant processes, an a priori

bias against the response made in error, increased variabil-

ity in a priori bias, or an increase in response cautiorQVhat does a man do after he makes an e@rditfis
Although the response caution interpretation has dominategiestion is just as valid as when it was first articulated by
the empirical literature, little research has attempted to teRfabbitt and Rodgerd 977), over 30 years ago. One answer
this interpretation in the context of a formal process modeto this question is that, after making an erroneous decision,
Here, we used the drift diffusion model to isolate ancbne slows down on the next decisfban empirical
identify the psychological processes responsible for postegularity known aspost-error slowing (PES; Laming,
error slowing. In a very large lexical decision data set, w&968 19793 1979h Rabbitt, 1966 1979 Rabbitt &
found that post-error slowing was associated with aiRodgers,1977). However, this answer raises a new and
increase in response caution Brtd a lesser exteNta more interesting question: Namelwhy does one slow
change in response bias. In the present data set, we foudown after making an error? Various answers have been
no evidence that post-error slowing is caused by perceptuaioposed, and one of the main goals of this article is to
distraction or time wasted on irrelevant processes. Thegaplement these answers in a formal model of decision
results support a response-monitoring account of post-erroraking so as to compare their adequacy in a precise and
slowing. quantitative fashion.

The competing explanations for PES, detailed in the next
section, are (1) increased response caution, (2) an a priori
bias away from the response that was just made in error, (3)
an overall decrease in the across-trial variability of a priori
bias, (4) distraction of attention, and (5) delayed startup due
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to irrelevant processes (e.g., overcoming disappointment).
We propose that these five explanations map uniquely onto
parameters in a drift diffusion model for response time (RT)
and accuracy (Ratclifff978 Ratcliff & McKoon, 2008.
As we will explain below, this one-to-one mapping between
psychological processes and model parameters allows for
an informative diffusion model decomposition of PES and a
rigorous assessment of the extent to which each explanation
(or, indeed, any combination of them) holds true.

A major practical obstacle that we needed to overcome
was that the drift diffusion model requires relatively many
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observations to produce informative parameter estimates; asThe third explanation (i.edecreased variability in bias
a rule of thumb, the model requires at least 10 error RTs iis that, following an error, people more accurately control
each experimental condition. Because the interest hetlee timing of the onset of information accumulation. This
centered on trials that follow an error, this means that thielea, first promoted by Lamingl968 19793, is that in
model required at least 10 errors that immediately followedpeeded RT tasks people often start to sample information
an error. With an error rate of 5% throughout, the minimunirom the display even before the stimulus is presented. This
number of observations would already be 4,000. Thus, advance sampling of stimulus-unrelated information indu-
reliable diffusion model decomposition of PES wouldces trial-to-trial variability in a priori bias. This variability
require a relatively large data set (or a data set with manpay cause fast errors, and therefore a cautious participant
errors). Here we fit the model to a lexical decision data setould start the information accumulation process at
featuring 39 participants who each completed 28,074 trialtimulus onset, but not before.
of speeded two-choice decisions (Keuleers, Brysbaert, & The fourth explanation (i.edistraction of attentionis
New, 2010. that the occurrence of an error is an infrequent, surprising
In the next sections, we will briefly discuss the differentevent that distracts participants during the processing of the
explanations for PES and formalize these predictions in treibsegent stimulus (Notebaert et aR009. Thus, the
context of the drift diffusion model. We then test theerror-induced distraction contaminates the process of
different explanations by fitting the model to the lexicalevidence accumulation.
decision data from Keuleers, Brysbaert, & N&010. The fifth explanation (i.edelayed startupis that errors
delay the start of evidence accumulation on the next trial;
for instance, participants might need time after an error to
Explanations for post-error slowing reassess their own performance level and overcome
disappointment (Rabbitt & Rodgerk977).
Over the years, several explanations have been proposed tdn the literature, the first explanation of PES (i.e.,
account for PES. The first explanation (i.@creased increased response caution) has always been the most
response cautignis that an error prompts people to dominant. Many studies that associate PES with cognitive
accumulate more information before they initiate a decieontrol affirm this association simply by citing Rabbitt
sion. The underlying idea is that people can adaptively1966. However, Rabbittl966 p. 272) concluded that his
change their response threshdldsecoming slightly less dataQlo not allow a choice between possible explanatidns.
cautious after a correct response, and more cautious after@ther studies have not tested the competing explanations in
errolN and thereby self-regulate to an optimal state of rigorous and quantitative manner (but see White, Ratcliff,
homeostasis characterized by fast responses and few errdasey, & McKoon,20100. Here, we set out to test the five
(e.g., Botvinick, Braver, Barch, Carter, & Cohe2)0]; explanations above in the context of what is arguably the
Brewer & Smith,1989 Cohen, Botvinick, & Carter2000 most popular and successful model for RTs and accuracy,
Fitts, 1966 Rabbitt & Rodgers1977 Smith & Brewer, the drift diffusion model (Ratcliff,1978 Ratcliff &
1995 Vickers & Lee, 1998. This explanation is so McKoon, 2009.
appealing that it is often assumed to be correct without
further testing. That is, PES is often interpreted as a direct
measure of cognitive control. Conclusions about cognitivé drift diffusion model decomposition of response times
control are then based on associations between PES and
physiological measures such as anterior cingulate activitpy the analysis of speeded two-choice tasks, performance
(Li, Huang, Constable, & Sinha2006 Danielmeier, is usually summarized by mean RTs and proportions
Eichele, Forstmann, Tittgemeyer, & Ullsperg@fll), correct. Although concise, this summary ignores impor-
error-related negativity and positivity (Hajcak, McDonaldtant aspects of the data and makes it difficult to draw
& Simons, 2003, or cortisol levels (Tops & Boksem, conclusions about the underlying cognitive processes that
201)). Alternatively, conclusions about cognitive controldrive performance (Wagenmakers, van der Maas, &
may be based on a comparison of PES between clinicBrasman,2007). A more detailed and more informative
groups (e.g., Shiels & HawkR010. analysis would take into account the entire RT distribu-
The second explanation (i.e., a pribiag is that people tions for both correct and error responses, in addition to
become negatively biased against the response option tlpmbportions correct. ThesRT distributions can be ana-
was just executed in error (e.g., Lamin68 1979  lyzed with the help of formal models; here, we focus on
Rabbitt & Rodgers1977. This implies that errors facilitate the drift diffusion model.
response alternations and hinder response repetitions, withThe drift diffusion model has been successfully applied
respect to both response speed and probability of occurrente.a wide range of experimental tasks, including brightness
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discrimination, letter identification, lexical decision, recog-
nition memory, signal detection, and the Implicit
Association Test (e.g., Dutilh, Vandekerckhove,
Tuerlinckx, & Wagenmakers2009 Klauer, Voss,
Schmitz, & Teige-Mocigemba2007 Ratcliff, 1978
Ratcliff, Gomez, & McKoon,2004 Ratcliff, Thapar, &
McKoon, 2006 201Q van Ravenzwaaij, van der Maas, &
Wagenmakers201L Wagenmakers, Ratcliff, Gomez, &
McKoon, 2009. In these tasks and others, the model has
been used to decompose the behavioral effects of phenom-
ena such as practice (Dutilh et &009 Dutilh, Krypotos,

& Wagenmakers2011 Petrov, Horn, & Ratcliff,2011),
aging (Ratcliff, Thapar, & McKoon2001, 2006 2010,
psychological disorders (White, Ratcliff, Vasey, &/ stimulusencoding TS resvonse execution
McKoon, 2009 2010a 2010h, sleep deprivation (Ratcliff
& Van Dongen,2009), intelligence (Ratcliff, Schmiedek, &
McKoon, 2008 Schmiedek, Oberauer, Wilhelm, SY§, &

word

starting point —

boundary sleparation
1

non!word

|

total RT

. . Fig. 1 The drift diffusion model as it applies to the lexical decision
Wittmann, 2007, van Ravenzwaaij, Brown, & tagk. A word stimulus has been presgnted (not shown), and two
Wagenmakers2011), and so forth. example sample paths represent the accumulations of evidence that
The success of the drift diffusion model is due to severaksult in one correct response (lighter line) and one error response
factors. First, this model not only takes into account meaEarker line). Repeated applications of the diffusion process vyield

. . T istograms of both correct responses (upper histogram) and incorrect
RTs, but considers entire RT distributions for correct an sponses (lower histogram). As is evident from the histograms, the

error responses; second, the drift diffusion model generallisrrect, upper, word boundary is reached more often than the
provides an excellent fit to observed data, with relativelyncorrect, lower, nonword boundary. The total RT consists of the
few parameters left free to vary; third, the drift diffusionsum of a decision component, modeled by the noisy accumulation of

del ts f b h k oh B vidence, and a nondecision component that represents the time
model accounts for many benchmark phenomena (Brown eded for processes such as stimulus encoding and response

Heathcote 2008 but see Pratte, Rouder, Morey, & Feng,execution

2010; fourth, the model allows researchers to decompose
observed performance into constituent cognitive processes
of interest; finally, evidence accumulation in the drift
diffusion model has been linked to the dynamics of neurag
firing rates, showing that diffusion-like processes can b
instantiated in the brain (e.g., Gold & Shadl2d)2 2007). 1.
Additional advantages (and limitations) of a diffusion
model analysis are discussed in more detail in
Wagenmakers2009.

Here, we briefly introduce the drift diffusion model as it
applies to the lexical decision task, a task in whicl2.
participants have to decide quickly whether a presented
letter string is a word (e.gparty) or a nonword (e.g.,
drapa). The core of the model is the Wiener diffusion
process, which describes how the relative evidence for one
of two response alternatives accumulates over time. The
meandering lines in Figl illustrate the continuous
accumulation of noisy evidence following the presentatior.
of a word stimulus. When the amount of diagnostic
evidence for one of the response options reaches a
predetermined response threshold (i.e., one of the horizon-
tal boundaries in Figl), the corresponding response is
initiated. The darker gray line in Fig. shows how the 4.
noiseinherent in the accumulation process can sometimes
cause the process to end up at the wrong (i.e., nonword)
response boundary.

@ Springer

The standard version of the drift diffusion model
ecomposes RTs and proportions correct into seven
ifferent parameters:

Mean drift rate (v). Drift rate quantifies the rate of
information accumulation from the stimulus. This
means that when the absolute value of drift rate is
high, decisions are fast and accurate; thuglates to
task difficulty or subject ability.

Across-trial variability in drift rate(! ). This parameter
reflects the fact that drift rate may fluctuate from one
trial to the next, according to a normal distribution with
meanv and standard deviatioh. The ! parameter
allows the drift diffusion model to account for data in
which error responses are systematically slower than
correct responses (Ratcliff978.

Boundary separatiorfa). Boundary separation quanti-
fies response caution and modulates the $peedracy
trade-off: At the price of an increase in RTs, participants
can decrease their error rate by widening the boundary
separation (e.g., Forstmann et 2008.

Mean starting poin{z). The starting point reflects the

a priori bias of a participant for one or the other
response. This parameter is usually manipulated via
payoff or proportion manipulations (Edward<)65
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Wagenmakers et al.2008 but see Diederich & Rouder {998, and Wagenmakers et a2008 showed that
Busemeyer2006. Here, we reporg as a proportion accuracy instructions increase boundary separation, easier
of boundary separatios, referred to as biaB. stimuli have higher drift rates, and unequal reward rates or
5. Across-trial variability in starting point(s,). This  presentation proportions are associated with changes in
parameter reflects the fact that starting point magtarting point. Moreover, simulation studies have shown
fluctuate from one trial to the next, according to athat the parameters of the diffusion model can be estimated
uniform distribution with mearz and ranges,. The reliably (e.g., Ratcliff & Tuerlinckx2002 Wagenmakers,
parameters, also allows the drift diffusion model to van der Maas, & Molenaa2005. Finally, Ratcliff 002
account for data in which error responses are systerhas shown that the model fits real data but fails to fit fake
atically faster than correct responses (Lamit@68  but plausible data.
Ratcliff & Rouder,1998. Analogous to the transfor-
mation ofz to B, s, is often transformed tss.
6. Mean of the nondecision component of procesgigy ~ From process to parameter: A drift diffusion model
This parameter encompasses the time spent on commperspective on post-error slowing
processds that is, processes executed irrespective of
the decision process. The drift diffusion model assumeglany recent applications of the drift diffusion model have
that the observed RT is the sum of the nondecisiobeen exploratory in nature; for instance, researchers have

component and the decision component (LUSR6): used the drift diffusion model to study the psychological
processes that change with practice (Dutilh et 2011
RT! DT" Tey #1$ Dutilh et al., 2009, sleep deprivation (Ratcliff & Van

Dongen, 2009, hypoglycemia (Geddes et a010, and

vyherg DT denotes decision time. Therefqre, nondecldysphoria (White et al.2009 20103, but this work has
sion timeT,, does not affect response choice and aCtgeIdom been guided by sirong prior expectations and
solely to shift the entire RT distribution. y

. S - theories. The situation is different in the case of PES,
7. Across-trial variability in the nondecision component of . - !
perhaps because explanations for PES have originated in

processing(s). This parameter reflects the fact that o . .

nondecision time may fluctuate from one trial to thepart from a framework of sequential information processing
: . S . e.g., Laming,19793. Therefore, the competing explan-

next, according to a uniform distribution with megn (eg 9 3 peting exp

ations for PES in terms of the cognitive processes that
and ranges. The parametex, also allows the model to g P

T ) change after an erfdrcan be mapped selectively to
capture RT distributions that show a relatively shallow 9 bp y

rise in the leading edge (Ratcliff & Tuerlinck¥002). Sg]:)?/:/ennitn rl):?éazmeters in the drift diffusion model, as is

As noted above, one of the strengths of the drift Thus, the cognitive-process explanation of increased
diffusion model is that it allows us to decompose observeresponse caution maps onto an increase in boundary
performance into several latent psychological processeseparatiors; the explanation of a priori bias corresponds
Such a decomposition relies on the validity of the mappingp a shift in biasB away from the boundary that was just
between model parameters and the postulated psychologicehched in error; the explanation of decreased variability in
processes. Fortunately, many experiments have attestedbias translates to a decrease in across-trial variailitiye
the specificity and reliability of the model parameters. Foexplanation of distraction of attention entails a decrease in
instance, Voss, Rothermund, and Vo880@, Ratcliff and mean drift ratev; and, finally, the explanation of delayed

explanations for post-error oy . .
slowing (PES) map uniquely Cognitive Explanation of Post-Error Slowing

onto different parameters from

Fig. 2 Cognitive-process ( ~N

the drift diffusion model. See Increase in Change in Decrease in Variability Distraction of Delayed Start-up
the text for details Response Caution a Priori Bias of a Priory Bias Attention
Increase in Shiftin Decrease in Variability Decrease in Increase in
Boundary Separation Starting Point of Starting Point Drift Rate Nondecision Time
a z s, v T
L Diffusion Model Parameter )
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Quantile Averaged RT and Accuracy

1200 4 A pe o freq6
® pc o freq5

startup is associated with an increase in mean nondecision
time Te. The unique links between processes and param-

eters mean that competing explanations for PES can be g gggg
rigorously tested in any particular paradigm, as long as the 100 | R Ireqi
drift diffusion model applies and the data set is sufficientlng’ A g o o mi
large. In the context of PES, the latter concern islq:) sod & | .
particularly acute. ) 2 | ae

% 0‘\ ! B

&_, 600 “ E Q:
Method ta ; o

400 - error responses E correct responses

The present data set was originally collected to validate a '
new measure for word frequency (i.e., SUBTLEX-NL; : o o o !

Keuleers, Brysbaert, & New010. Each of 39 participants
contributed 28,074 lexical decisions, for a grand total of
1,094,886 decisions. Half of the stimuli were uniquelyrig. 3 Post-error and word frequency effects on RT distributions and
presented words, and the other half were uniquely preccuracy: Each pair of dots on the right half of the figure reflects the
sented nonwords. The word stimuli were selected from tHEECCA. L0 2S00 i o o o octRT tiktrbution on
CELEX database (Ba.ayep, Piepenbrock, & van R, e right half has its incorrect-RT counterpart on the left half of the
and the nonword stimuli were created with the Wuggigure, at one minus the accuracy on thaxis. Post-error trials are
pseudoword generator (Keuleers & Brysbazot.(). slower and somewhat more accurate than postcorrect trials. This
The experiment was presented in blocks of 500 trialfgzgere”mt‘o'dzrfgg (grllaévolgjtitg:l;g’r ?}E‘ér']t]jrse;n(ggcpmg‘;gg;gg ‘g low-
. ; . frequency wi igh-frequency wi .
with a se!f-paced break_ aft?r ev_ery 100 me_lls' Each t”ar[\ addition, the effect is more pronounced in the tail of the RT
started with a 500-ms fixatn period. The stimulus was (istribution
then presented until the participant responded, up to a
maximum of 2,000 ms. A new trial started 500 ms aftegffects of errors on the latent psychological processes
the response. Participants received feedback about thﬁ&?pothesized to explain PES.
accuracy after each block of 500 trials. Importantly, ~ pogsterror effects on observed dafghe different
participants did not receive trial-by-trial feedbackyynotheses about PES entail effects on RTs, effects on
concerning errors. This means that any post-error effectzoportions correct, or a combination of the two. It would
were not contaminated by the possibly distractingperefore be informative to shiaboth for post-error and
presence of error feedback. More detailed descriptiong,sicorrect trials, as well as for different stimulus catedbries
of the experimental methods are presented in Keuleelgyiire distributions of RTs for correct and error responses,
Brysbaert, & New 2010 and Keuleers, Diependaele, andogether with proportions correct. A convenient tool to paint
Brysbaert £010. _ o - this multivariate picture is the quantile probability plot (e.g.,
The enormous number of lexical decision trials in th'SRathiff, 2002. Figure3 shows a quantile probability plot for
data set featured a commensurate amount of errors; acress gata from Keuleers Brysbaert, and N26i(), based on
all parﬂupants, 118,566 trials (i.e., 10.80%) contamg%veraging RT quantiles and proportions across individual
errors. This abundance of errors allowed us to examing; ricipants.
the explanations for PES mxss various conditions. — pigyre3 features two important factors in the design of
Specifically, we were able to compare post-error effecis study that is, post-error trials versus postcorrect trials
separately for nonword and word stimuli of varying word; e triangles vs. circles) and the word frequency of the
frequencies. That is, we used word frequency (based Qqyrrent stimulus (including nonwords; different shades of
SUBTLEX) to Q|V|de gll words into six equally large bins, ray). The plot is read as follows. Each column of points
the five cut points being 0.11, 0.48, 1.33, 3.73, and 14.18 mmarizes a single RT distribution by five quantiles (i.e.,
occurrences per million. the .1, .3, .5, .7, and .9 quantiles; e.g., the .1 quantile is the
RT value for which 10% of the RT distribution was faster;

Probability of Response

Results and discussion
! The analyses reported here concern the difference between post-

. . rrect trials and post-error trials. Results based on the difference
Below we first discuss the effects of errors on the Observeﬁ)ﬁétween pre-error and post-error trials yielded quantitatively and

performanch that is, on RTs and proportions correct. Next,qajitatively similar results. The latter resuits can be found at the first
we fit the drift diffusion model to the data and discuss thewuthofs Web site.
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the .5 quantile is the median RT). Each column in the righin the leading edge of the distribution (for correct
half of the figure describes a correct-RT distribution for aesponses, on average 3 ms for the .1 quantile) and biggest
particular condition; its position on theaxis shows the at the tail (on average 38 ms for the .9 quantile). These PES
corresponding proportion correct (e.g.,= .61 for the effects are more pronounced for low-frequency (Frequency
postcorrect, low-frequenayreq 10words). This correct-RT Groups 1 and 2) than for high-frequency words. Figtire
distribution has an associated distribution of incorrect RTgooms in to the PES effect by presenting the data (and the
shown in the left half of the figure (e.g.= 1 D.61 = .39 for model fit discussed later) aglalta plot(de Jong, Liang, &
the postcorrect, low-frequen€ireq 1Owords). Lauber, 1994 Pratte et al.,2010 Speckman, Rouder,
Figure 3 shows that word frequency benefits perfor-Morey, & Pratte,2008. In a delta plot, the factor of
mance: High-frequency words are associated with low erranteres in this case, the PES effétts shown as a
rates and fast RT quantiles. More important for the presefinction of response speed. Here, Eighows the average
study, RT quantiles are slower after an error (triangles) thaPES effect (i.e., the PES effect across all experimental
after a correct response (circles). The slowdown is smallesbnditions, quantile-averaged across participants). The delta

word frequency group 1 word frequency group 2 word frequency group 3
® data ® data o ® data
- —6— model - —e— model - —e— model
§ 60 . § 60 § 60
<] <] 5]
L e e o
D 40 D 40 1 D 40
o o o
o o o
z + z z +
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3 k5 @VP k5
z c 4 7 ® ki
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400 600 800 1000 400 600 800 1000 400 600 800 1000
RT quantiles RT quantiles RT quantiles
word frequency group 4 word frequency group 5 word frequency group 6
® data ® data ® data
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QS 60 8 60 8 60
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o
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@
o
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Fig. 4 Delta plots of PES effect against response speed in postcorrdites with open circles represent predictions from the model. For both
trials, separately for all word frequencies and nonwords. Solid circlethe empirical data and the model predictions, the effects were obtained
represent the empirical data (error bars indicate standard errors), dandquantile-averaging the results across participants
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plot indicates that the PES effect is negligible for very fasBIC-best model was then used to quantify the impact of the
responses and becomes more prominent when RTs are sl@nmary factor of interest; that is, the factor Post-error
In the following discussion, we will assess differenced/ersus Postcorrect was allowed to affect all of the diffusion
between conditions by quantifying the evidence in favor ofnodel parameters.
or against the null hypothesis using a default Bayesiest In this BIC-best model, the different factors affected the
(Rouder, Speckman, Sun, Morey, & Ivers@f0q Wetzels, model8 parameters as follows: Stimulus Type of the
Raaijmakers, Jakab, & Wagenmak&®)9 Wetzels et al., Current Trial was allowed to affect drift rateand its
2011). The resulting Bayes factor B§-quantifies how variability !, as well as nondecision tim&.,. Word
much more (or less) likely the data are under the alternativerequency was allowed to affect drift rateand Te,.
hypothesis than under the null hypothesis. For instance,&imulus Type of the Previous Trial was allowed to affect
BFo of 2 indicates that the data are twice as likely undebias B and its variability sz. In support of the model
the alternative hypothesis than under the null hypothesiselected to analyze the PES effect, Tdb&hows the BIC
whereas a Bfp of 1/2 indicates that the data are twice aglifference (averaged across participants) between the
likely under the null hypothesis than under the alternativeelected model described above and four alternative
hypothesis. models. These alternatives implement restrictions on the
For the low-frequency words, accuracy is slightly higheselected model to test the necessity of including (1) the
following an error than following a correct response(B¥  effect of word frequency omg, (2) the stimulus type effect
51.8). For higher word frequencies, no change in accura@n !, (3) the previous stimul@ effect onB and its
was present (all Bayes factors B 1/2.61). The small variability sz, and (4) the word frequency effect on
decrease in post-error accuracy for nonwords (about 0.7%)Table1 shows that for the postcorrect trials, the alternative
supported by a Bayes factor of 10.0. models all perform worse than the selected model. This
Although the post-error effects in Figare qualitatively indicates that the parameters excluded in each of the
consistent across different levels of word frequency, it is n@lternative models are essential to account for the data.
unambiguously clear how these effects should be intefFor the post-error trials, the BIC recommends two
preted in terms of underlying psychological processes. Thaternative models over the selected model. However, the
simultaneous increase in RTs and accuracy seems tge of different models for the postcorrect and post-error
support an explanation in terms of increased respons®nditions would hinder a direct comparison between them,
caution. However, the observed results could also bend therefore we opted to analyze the data with the single
produced by a combination of increased attention (i.e., drifnodel outlined above.
ratev) and a delayed startup of processing (i.e., nondecision Figure4, discussed earlier, compares the data against the
time Tg). And, even if one were to ignore this alternativemodel predictions. The solid dots represent the empirical
interpretation, it is by no means certain that the observed
data would support a single psychological mechanism for
PES. In order to address this issue and provide &ble 1 BIC results for the model selected to analyze the PES effect
comprehensive account of the data in terms of th%ondition

’ . ] . . Omitted Effect Average BIC
underlying, possibly interacting psychological processes Difference
that cause PES, we now turn to a diffusion modet
decomposition. Postcorrect Word frequency dg, 197.98

Post-error effects on latent processefe fit the model Stimulus type o 182.82
to the individual data using the MATLAB package DMAT Previous stimulus oB andss 227.14
(Vandekerckhove & Tuerlinckx2007, 2008, which allows Word frequency owv 1,702.75
the user to estimate the model parameters using maximufast-error Word frequency o 121.76
likelihood. As noted above, the size of the present data set Stimulus type ori 18.52
allowed us to examine several experimental conditions or Previous stimulus oB andsg 0.65
factors. The primary factor was the Correctness of the Word frequency owv 211.88

Previous Trial, and secondary factors were Stimulus TypTeh dle col - . | _ ol b
(i.e., Word vs. Nonword) on the Current Trial, Word '"® middle column indicates how alternative models were created by
restricting the selected model in several ways. The rightmost column

Frequency on the Current Trial, and Stimulus Type on thgnows the BIC difference (averaged across participants), in favor of
Previous Trial. the selected model against each of the alternative models. Positive
For the secondary factors we used the BIC (BayesiaflC values indicate that the selected model is better. For the

; ; A An- postcorrect trials, the omission of any of the effects results in a
information criterion; Schwarzl978 Raftery, 1993 to clearly worse fit. For the post-error trials, the BIC results suggest that

eliminate excess parameters and select the most parsimafis word frequency effect ok, and the stimulus type effect érare
ous model that still gave an acceptable fit to the data. Thist needed. See the text for details.
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Fig. 5 The four main parame- 0.16 - 0.6
ters of the diffusion model, [
shown separately for postcorrect S 015 0.5 LR
and post-error trials. Bid3 was g 0.4 sl
. < o O
estimated separately for post- = 014 5 3 _—
word and post-nonword condi- 0 0.144 £ 037
tions. Drift ratev and s } 5 g, LR
nondecision timd,, were esti- § 0.13 -
mated separately for nonwords a 01-s % A postlerror
and for different categories of 012 0.0 ® postlcorrect
word frequency. The most T T ’ | B R E R E—
prominent post-error effect is an posticorrect postlerror T v o ¥ o o B
increase in boundary separation. % % % % % % g
Error bars represent standard § ‘g ’g g g ’g <
errors of the means
0.6
A postlerror
® postlcorrect 0.48
: : ]
; g :
E I F 046 { {
%) c
8 05 ) ° } }
o 5 % g E {
S § 044
5 ¢ 5 E }
z
_ 0.42 - A postlerror
0.4 ® postlcorrect
T I
post!word postinonword
response response

wordfreq 1 —
wordfreq 2 —
wordfreq 3
wordfreq 4 —
wordfreq 5 —
wordfreq 6 —

nonword —

data (i.e., the PES effect in all experimental conditionghoth figures. This increase in boundary separation indicates
quantile-averaged across participants), and the lines withat, on average, participants became more cautious after
open dots represent the predictions of the best-fitting modebmmitting an error. The Rouder et aR009 default
parameters. Overall, the fit is good, except perhaps for tHgayesiant test indicated that the data were about 180,000
.9 quantile; this might be due to the fact that this quantile iSmes more likely under the alternative hypothesis of
the most difficult to estimate reliably. unequal boundary separation than under the null hypothesis
Figures5 and 6 show the estimates for the diffusion of equal boundary separation; this is considered extreme
model parameters, averaged over participants. The assoewdence in favor of an effect.
ated Figs.7 and 8 present the differences in the model The bottom left panels of Figé.and7 show the post-
parameters for postcorrect versus post-error trials. The mastor effect on bias. After an error, participants shifted their
obvious effect in Figs5 and7 is the increase in boundary a priori preference toward tf@ordOresponse, both when
separation after an error, shown in the upper left panels tfie erroneous response WardO(BF,o = 11.2) and when

0177 0117 A postlerror
0.10 1 0.30 ® postlcorrect
0.16
@ 0.09 } 0.25 3 1
_ s}
0.15 2 084
& i~ I % 0.20 |
] = 0.07
0.14 = I
3 . 0.15
§ 0.06 T
0.13 [
0057 A postlerror 0.10
0.12 - 0.04 ® postlcorrect
T T T T T T
postlcorrect postlerror postiword post!nonword word nonword

response response
Fig. 6 The three variability parameters of the diffusion model, showrbut the error bars show that these effects are unreliable. Error bars

separately for postcorrect and pesror trials. All variability  represent standard errors of the means
parameters are slightly higher for post-error than for postcorrect trials,
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Fig. 7 For each of the four Boundary Separation Drift Rate

main diffusion model parame- 0.04 — 0.3 °

ters, box plots represent the I ° -

distributions of the PES effect S 003 | 8 02 T T o,

over participants. Comparisons 5 X 5 ud — & — ! ' '

with the dashed horizontal lines S o002 ' 2 T '

at zero suggest that PES effects 8 8 o0 - E- E . E =

express themselves only on 2 oo = . - ' : .

boundary separation and a priori 5 : 5 ~ Ll

blaS (after an erroneous non_ § 000 s R R E) 102 o o

word response). Boxes contain 2 | 3 .

50% of the values, and whiskers Q1001 — g 103 7 , , , , , , ,
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it washonword)(BF; > 8.51 ! 107). In combination with  that response had been correct (8% 1.35 ! 10° for the
the overall error-induced increase in boundary separatioopmparison of bias between postword responses and post-
this means that following an error, people became someonword responses) or incorrect (B 2.34 ! 10° for the
what more careful to respon@vordO but even more same comparison).
careful to respondhonwordO The reason for this asym-  The right two panels of Fig§.and7 show the post-error
metry is currently unclear, and more empirical work will beeffects on drift rate and nondecision time. Neither drift rate
needed to ascertain whether the asymmetry generalizes(for all frequencies, Bfg < 1/3.06) nor nondecision time
other experimental designs. (for all frequencies, Bfg < 1/3.00) was affected by whether
The bottom left panel of Figh also shows a response or not the response on the previous trial was incorrect. Drift
repetition effect: Participants had a bias toward the responsste did increase with word frequency, indicating that high-
that was executed on the previous trial, regardless of whethfeequency words were easier to classify than low-frequency
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Fig. 8 For each of the three variability parameters of the diffusiorsuggest that PES effects on the variability parameters are not reliable.
model, box plots represent the distributions of the PES effect ovaBoxes contain 50% of the values, and whiskers enclose 80% of the
participants. Comparisons with the dashed horizontal lines at zeralues
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words (see also Ratcliff et ak004 Wagenmakers et al., anxiety; in addition, their behavioral data did not show a
2008. Nondecision time was also affected by wordPES effect, and, moreover, the diffusion model decompo-
frequency, indicating thaprocesses such as stimulussition revealed that for both anxiety groups, errors were
encoding and response execution took less time for higliellowed by an unexpected decrease in nondecision time
frequency words than they did for low-frequency wordsand a decrease in discriminability (i.e., a drift rate
This finding is conceptually consistent with that of Dutilh etdifference between targets and lures). Therefore, we feel
al. (2017, who found that practice for specific lexical itemsthat our study presents a more compelling case in favor of
reduced nondecision time. the increased-response-caution explanation of PES.
Figure 6 shows the estimates for the variability param- The present study shows that the drift diffusion model can
eters of the diffusion model, averaged over participantfe used not only to theorize about the causes of PES, but also
The associated Fi@. presents the differences in the modelto decompose the behavioral aftereffects of an error into its
parameters for postcorrect versus post-error trials. Thenstituent psychological processes. Such a decomposition is
figures suggest that none of the variability parameters ammnsiderably more informative than the standard analysis of
responsible for PES. However, we did find that themean RTs and accuracy, and we believe that future studies of
variability in drift ! was larger for words than for PES can benefit from taking a similar approach.
nonwords, replicating the result from an earlier lexical

ision Dutilh I . . o
decision study (. ut . et al2009 .. Open Access This article is distributed under the terms of the
In sum, the diffusion model decomposition supports alEreative Commons Attribution Noncommercial License which per-

explanation of PES in terms of increased response cautiafits any noncommercial use, distribution, and reproduction in any
medium, provided the original author(s) and source are credited.
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