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Abstract 

Evidence accumulaJon models (EAMs) are powerful tools for making sense of human and 

animal decision-making behaviour. EAMs have generated significant theoreJcal advances in 

psychology, behavioural economics, and cogniJve neuroscience, and are increasingly used as 

a measurement tool in clinical research and other applied seongs. Obtaining valid and 

reliable inferences from EAMs depends on knowing how to establish a close match between 

model assumpJons and features of the task/data to which the model is applied. However, 

this knowledge is rarely arJculated in the EAM literature, leaving beginners to rely on the 

private advice of mentors and colleagues, and on inefficient trial-and-error learning. In this 

arJcle, we provide pracJcal guidance for designing tasks appropriate for EAMs, for relaJng 

experimental manipulaJons to EAM parameters, for planning appropriate sample sizes, and 

for preparing data and conducJng an EAM analysis. Our advice is based on prior 

methodological studies and the authors’ substanJal collecJve experience with EAMs. By 

encouraging good task design pracJces, and warning of potenJal piralls, we hope to 

improve the quality and trustworthiness of future EAM research and applicaJons.  

 

Keywords: evidence accumulaJon models; experimental design; decision making; response 

Jme; model-based cogniJve neuroscience 
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Introduc1on 

Evidence accumulaJon models (EAMs) are powerful tools for understanding human and 

animal decision-making (Donkin & Brown, 2018; Evans & Wagenmakers, 2019; Gold & 

Shadlen, 2007; Smith & Ratcliff, 2024). They enable quanJtaJve measurement of latent 

decision processes that are confounded in typical (e.g., linear model) analyses of response 

Jme (RT) and error rate (Lerche & Voss, 2020). EAMs explain key benchmark phenomena 

that arise in decision-making tasks (e.g., speed—accuracy trade-offs, asymmetries in the 

speed of correct and incorrect responses, and the characterisJc posiJve-skew of RT 

distribuJons; Ratcliff & McKoon, 2008). Since their introducJon in the 1960s and 1970s 

(Audley & Pike, 1965; Laming, 1968; Link & Heath, 1975; Stone, 1960; Vickers, 1970), EAMs 

have become one of the most successful theoreJcal frameworks in cogniJve psychology 

(Evans & Wagenmakers, 2019; Ratcliff et al., 2016; Ratcliff & McKoon, 2008; Smith & Ratcliff, 

2024) and cogniJve neuroscience (Forstmann, Wagenmakers, et al., 2011; Forstmann et al., 

2016; Gold & Shadlen, 2007; Mulder et al., 2014; Schall, 2019; Smith & Ratcliff, 2004). 

Further, they are increasingly being used to answer quesJons in domains such as 

behavioural economics (Busemeyer et al., 2019; Krajbich et al., 2014; Krajbich & Rangel, 

2011), Human Factors/ergonomics (Boag et al., 2023) and in clinical/healthcare seongs 

(Copeland et al., 2023; Ratcliff et al., 2022; White et al., 2010).  

Obtaining valid inferences from EAMs relies on achieving a close match between model 

assumpJons and features of the task and data to which the model is applied. Failing to 

achieve an appropriate task—model match can lead to misleading or spurious conclusions 

(e.g., Cassey et al., 2014; Ratcliff & Kang, 2021). However, the EAM literature lacks a 

comprehensive arJculaJon of how to achieve a good task—model match. In this arJcle, we 

provide pracJcal guidance for designing tasks appropriate for EAMs, for relaJng 

experimental manipulaJons to EAM parameters, for sample size planning, for collecJng and 

preparing data, and for conducJng and reporJng an EAM analysis. We point out problems 

that can arise if the models are used without sufficient regard for the factors that determine 

their validity. SomeJmes there is no one-size-fits-all answer and finding an appropriate 

design may require careful judgment and consideraJon of trade-offs (e.g., collecJng more 

trials versus maintaining parJcipant engagement). To aid this process, we highlight the key 

issues and potenJal piralls affecJng EAM analyses, so that readers can beVer plan 
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experiments for reliable EAM analysis. Our advice is grounded in prior methodological 

studies and in the authors’ years of collecJve experience using EAMs to understand human 

and animal decision making.  

By encouraging good task design pracJces, we hope to improve the quality and 

trustworthiness of future EAM research and applicaJons. To make our advice as broadly 

applicable as possible, we do not focus on the details of specific EAMs. Instead, we focus on 

the common properJes and design consideraJons shared by the most prominent basic EAM 

architectures (i.e., rela%ve evidence models, e.g., Ratcliff, 1978; Wagenmakers et al., 2007, 

2008; and racing accumulator models, e.g., Brown & Heathcote, 2008; Tillman et al., 2020; 

Usher & McClelland, 2001; see Figure 1). Our advice is intended for researchers and 

students who wish to apply an exisJng ‘off-the-shelf’ EAM to an experimental task in order 

to measure the cogniJve processes driving decision-making behaviour. While our 

recommendaJons are intended for EAMs, many also apply more broadly to other cogniJve 

modelling approaches (e.g., reinforcement learning, Wilson & Collins, 2019).  

In the next secJon, we outline the general features and assumpJons of EAMs. The 

remainder of the arJcle is structured according to a typical EAM study workflow: We first 

consider whether an EAM is the appropriate tool for our research quesJon. Next, we look at 

how to design EAM-appropriate experimental tasks, and strategies for collecJng suitable 

data. We cover sample size planning and discuss best pracJces for experimental procedure, 

for assessing the quality of collected data, and for obtaining valid and reliable inferences 

from EAM analyses. We discuss interpreJng and reporJng the results of an EAM analysis and 

close with advice on what to do when the standard models fail.  

 

The architecture of standard EAMs 

EAMs assume that when presented with a sJmulus (e.g., a lek- or right-facing arrow), the 

decision maker samples evidence for the available acJons or choice opJons (e.g., “Should I 

press the lek or right arrow key?”) unJl a threshold amount of evidence is reached. Many 

prominent models assume within-trial noise in this accumulaJon process (Ratcliff, 1978; 

Tillman et al., 2020; Usher & McClelland, 2001), although it is possible to capture key RT 

phenomena assuming only between-trial noise (Brown & Heathcote, 2008). Reaching a 

threshold immediately triggers the motor movement for the overt response (e.g., pressing 
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the lek arrow key). Total RT is assumed to be the sum of three strictly sequenJal processing 

stages: 1) sJmulus encoding, 2) decision making (evidence accumulaJon), and 3) motor 

response execuJon1 (Bompas et al., 2023; Kelly et al., 2021; Servant et al., 2021; Weindel, 

Gajdos, et al., 2021). As we will see, this places constraints on the Jming and structure of 

decision-making tasks appropriate for use with EAMs.  

Figure 1 depicts the two prominent classes of EAM architectures. In rela%ve evidence 

models, decisions are based on accumulaJng the difference in evidence between response 

opJons (e.g., Ratcliff, 1978; Ratcliff & McKoon, 2008; Ratcliff & Rouder, 1998; van 

Ravenzwaaij et al., 2017; Wagenmakers et al., 2007, 2008). RelaJve evidence models have 

historically been limited to decisions involving two choice opJons (but see, Churchland et 

al., 2008; DiVerich, 2010; Kvam, 2019; Niwa & DiVerich, 2008; Smith et al., 2020). By 

contrast, in racing accumulator models, decisions are based on accumulaJng the absolute 

evidence for response opJons in separate modular accumulators (e.g., Bogacz et al., 2007; 

Brown & Heathcote, 2008; Heathcote & Love, 2012; Kirkpatrick et al., 2021; Rouder et al., 

2015; Teodorescu & Usher, 2013; Tillman et al., 2020; Tsetsos et al., 2011; Usher et al., 

2002; Usher & McClelland, 2001). Racing accumulator models can accommodate any 

number of choice opJons, typically with an accumulator per choice. Although relaJve and 

absolute evidence models differ regarding how they conceptualize evidence, they have 

similar requirements for achieving a good task—model match and oken arrive at the same 

substanJve conclusions (Donkin, Brown, Heathcote, et al., 2011). In both architectures, 

decision making is governed by the same 3 or 4 parameters, which are interpreted similarly 

across models (Voss et al., 2004). Moreover, both architectures have similar data quality 

requirements and oken give convergent results when applied to the same data (Donkin, 

Brown, Heathcote, et al., 2011; DuJlh et al., 2019).  

  

 

 
1 In most EAMs, the .me taken for s.mulus encoding and motor responding are not separately iden.fiable. 
Instead, only their sum (referred to as “nondecision .me”) is es.mated (i.e., total RT = decision .me + 
nondecision .me).  
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Figure 1. Illustra/on of two standard EAM architectures. In rela/ve evidence models (Panel A), 

decisions are based on accumula/ng the difference in evidence between response op/ons. The 

first threshold to be reached determines the overt response and RT. In racing accumulator models 

(Panel B), decisions are based on accumula/ng the absolute evidence for N response op/ons in 

separate modular accumulators. In these models, the first accumulator to reach threshold 

determines the overt response and RT. In both architectures, RT is the sum of decision /me plus 

the /me taken for nondecision processes such as sensory encoding and produc/on of the motor 

response. Both architectures share common processing assump/ons and interpreta/on of core 

parameters (see text for details). Note that only the noiseless mean accumula/on rate is depicted. 

For models with within-trial noise, each accumula/on process traces a noisy trajectory around this 

mean rate (e.g., Ratcliff, 1978).  

 

A comprehensive overview of key model parameters and their uses is given in the secJon 

‘Mapping EAM Parameters to Experimental ManipulaJons’. However, briefly, the models 

contain parameters controlling the evidence starJng point (allowing for a priori biases), 

accumulaJon rate (controlling the speed of processing), threshold/boundary separaJon 

(controlling the amount of evidence required to make a response), and nondecision Jme 

(the sum of Jme taken for sJmulus encoding and motor response producJon). The basic 

frameworks also allow across-trial variability in accumulaJon rate, starJng point, and 

nondecision Jme, which account for commonly observed differences in the speed of correct 

and incorrect responses (Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx, 2002).  

As will be discussed (see secJon ‘Going Beyond the Standard Models’), the basic 

architecture has been extended to include addiJonal mechanisms (e.g., Fific et al., 2010; 

McDougle & Collins, 2021; MileJć et al., 2021; Nosofsky & Palmeri, 1997, 2015; Pedersen et 

al., 2017) and to account for tasks/situaJons that violate various processing assumpJons of 
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the standard models (e.g., Diederich, 2024; Diederich & Trueblood, 2018; Hawkins et al., 

2015; Holmes et al., 2016; Holmes & Trueblood, 2018; Lee & Sewell, 2024; LiVle et al., 2018; 

Smith & Ratcliff, 2022; Ulrich et al., 2015; Voss et al., 2019; White et al., 2011; Zhang et al., 

2014; for a review, Evans & Wagenmakers, 2019). Most of the advice in this arJcle will apply 

when working with these models. However, researchers should be aware that extended 

models may operate on a different set of processing assumpJons and thus have idiosyncraJc 

(mechanism-specific) design constraints.  

 

Processing assump1ons of standard EAMs 

Here, we outline the core assumpJons of the basic EAM framework that have 

implicaJons for the design of tasks suitable for EAMs (summarised in Table 1). For data from 

an experimental task to be suitable, the task must saJsfy the assumpJons of the model. The 

core structural assumpJon of the models is that each decision is the result of a single, 

con%nuous (uninterrupted) evidence accumula%on process and culminates in a single 

discrete response. In short, the models apply to tasks in which one decision is followed by 

one response (Brown & Heathcote, 2008; Busemeyer & Townsend, 1993; Ratcliff, 1978; 

Usher & McClelland, 2001).  

During a trial/decision, the models assume within-trial sta%onarity, which refers to the 

assumpJon that model parameters (e.g., accumulaJon rates and thresholds) do not change 

in value while a decision is in progress (Ratcliff, 1978). For accumulaJon rates, this means 

that evidence accumulates at a constant average rate2 (although potenJally with substanJal 

noise) for the duraJon of the trial (i.e., from sJmulus onset to response onset) (Brown & 

Heathcote, 2008; Ratcliff, 1978; for alternaJves, SJne et al., 2020). In pracJce, this means 

that sJmuli should provide a constant input to the evidence accumulaJon process (i.e., 

sJmulus evidence should not change in strength or sign over the course of a trial, Lee & 

Sewell, 2024; Smith & Lilburn, 2020). For thresholds, within-trial staJonarity means that 

thresholds are set prior to sJmulus onset and do not change in value during a trial. This 

means that individuals are assumed to keep the same cogniJve control/speed—accuracy 

 
2 Some models, most prominently, the leaky compe.ng accumulator model (Usher & McClelland, 2001), relax 
this assump.on in that the dominant response accumulator may provide increasingly strong inhibitory input to 
its compe.tors over .me, which would reduce the mean accumula.on rate for compe.ng responses 
throughout a trial.  
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trade-off seongs throughout a decision and to not increase or decrease in cauJon during a 

trial (for models that allow dynamic thresholds, Hawkins et al., 2015; Smith & Ratcliff, 2022; 

Voskuilen et al., 2016).  

Across trials, the standard applicaJon of EAMs assumes within-condi%on sta%onarity, 

which refers to the assumpJon that model parameters do not change in value across trials 

(of the same type) within a condiJon. This assumpJon is important for model fiong, which 

relies on pooling informaJon across trials of the same type. TheoreJcally, the assumpJon is 

that trials of the same type are independent measurements of the same underlying process 

(generated from the same cogniJve seongs). Empirically, the expectaJon is that parJcipant 

performance is stable for the duraJon of the experiment3 (e.g., RT distribuJons do not 

change in shape or scale over Jme).  

The reviewed EAM assumpJons have implicaJons for the (choice-RT) data to which they 

are applied. For one, EAMs can only predict posi%vely skewed RT distribu%ons. This owes to 

the geometry of the models, whereby equal differences in accumulaJon rate are projected 

as unequal differences in decision Jme (see Figure 1) (Ratcliff & McKoon, 2008). In pracJce, 

this means that the models can only fit empirical RT distribuJons with characterisJc posiJve 

skewness, and fail to fit RT distribuJons that are normal or negaJvely skewed in shape 

(Evans, Hawkins, et al., 2020). Ignoring skew can lead to biases in parameter esJmaJon 

(Verdonck & Tuerlinckx, 2016). The secJon ‘Planning Tasks that Meet EAM AssumpJons’ 

contains advice on ensuring data saJsfy this assumpJon.  

Finally, EAMs assume the data are free of contaminant processes. That is, data come 

from an evidence accumulaJon process and not some other process such as random 

guessing or nonresponding (Ratcliff, 1993; Ratcliff & Tuerlinckx, 2002). Strategies for 

idenJfying and accounJng for contaminants are discussed throughout the arJcle.  

With this background in place, the remainder of this arJcle steps through the 

components of a typical EAM study workflow, giving advice on how to plan and conduct a 

robust study. In doing so, we regularly refer back to the model assumpJons outlined in this 

secJon.  

 

 
3 However, when there are a sufficient number of trials in an experiment, blocks or sessions of trials may be 
treated as another condi.on, thus allowing for es.ma.on of block-to-block changes in model parameters (e.g., 
Du.lh et al., 2009).  
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Table 1. Standard EAM assumpJons and implicaJons for task design.  

EAM assump*on Explana*on Design implica*ons 

Decisions well described by a 

single, con.nuous accumula.on 

process resul.ng in a discrete 

response 

The outcome of each decision 

(trial) is a discrete response 

resul.ng from an uninterrupted 

evidence accumula.on process 

running from s.mulus to 

response onset (i.e., one decision 

↦	one response).  

Trials should have a clear s.mulus 

onset. 

The response modality should 

allow precise measurement of 

response onset.  

Within-trial sta.onarity Model parameters do not change 

during a decision (trial). S.mulus 

evidence should not change (e.g., 

ramp up or change sign) during a 

trial. Thresholds do not change 

dynamically within a trial or in 

response to informa.on unknown 

before s.mulus onset.  

Use sta.c s.muli that provide a 

constant eviden.ary input from 

s.mulus onset to the response.  

Use sufficiently long intertrial 

intervals to avoid interference 

from processes that ran on 

previous trials (e.g., process 

overlap and proac.ve 

interference).  

Within-condi.on sta.onarity  Model parameters do not change 

across trials of the same type. 

Trials of the same type should be 

independent observa.ons 

generated by the same latent 

cogni.ve seVngs. Necessary for 

pooling observa.ons for model 

fiVng.  

Minimize learning effects that are 

not modelled. Minimize 

fluctua.ons of a[en.on and 

poten.al changes in strategy. 

Posi.vely skewed RT distribu.ons RT distribu.ons for each response 

should be posi.vely skewed and 

free from trunca.on in the tails. 

Use a well-calibrated response 

window (calibrated to the mean 

RT and variance of a typical 

par.cipant performing the target 

task).  

Data free of contaminant 

processes 

Data come from an evidence 

accumula.on process (and not 

some other process such as fast 

guessing). Par.cipants perform 

the task as instructed.  

Provide clear task instruc.ons. 

Monitor par.cipant behaviour. 

Display correc.ve feedback 

following undesirable responses 

(e.g., “Too fast!”). Allow 

par.cipants sufficient breaks.  
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Planning research ques1ons for EAM analysis 

Before the task design and modelling process can begin, the researcher must first decide 

whether an EAM analysis is the appropriate tool to answer the research quesJon. While 

EAMs have many uses (Crüwell, Stefan, et al., 2019), our present focus is on using EAMs as a 

cogniJve measurement model (Donkin & Brown, 2018; Lee et al., 2019; see also, Batchelder, 

2010, 2016; Batchelder & Riefer, 1999; Smith & Batchelder, 2010). Measurement studies 

typically focus on interpreJng the parameters of an exisJng ‘off-the-shelf’ EAM that is taken 

a priori to adequately characterise the processes individuals use to perform the target task 

(e.g., Huang-Pollock et al., 2017; Janczyk & Lerche, 2019; Klauer et al., 2007; Ratcliff et al., 

2004; Ratcliff & Rouder, 2000). To understand what kinds of research quesJons are suitable 

for EAM analysis, it is helpful to consider the output of an EAM that has been fit to 

parJcipant data. For each parJcipant, the model provides parameters that represent 

measurements of that individual’s latent cogniJve seongs (e.g., accumulaJon rate, 

threshold, bias, and nondecision Jme). AddiJonal populaJon-level parameters 

characterising group differences can be obtained using hierarchical modelling approaches 

(e.g., Chávez De la Peña & Vandekerckhove, 2023; Gunawan et al., 2020; Heathcote et al., 

2019; Stevenson, Innes, et al., 2024; Wiecki et al., 2013). Changes in cogniJve processes are 

quanJfied by changes in the values of this set of model parameters. Therefore, suitable 

research quesJons involve assessing how model parameters differ within or between groups 

(e.g., Ratcliff et al., 2003; Steyvers et al., 2019), individuals (e.g., Evans et al., 2018), or 

experimental condiJons/treatments (e.g., Heathcote et al., 2015; Ratcliff et al., 2003; 

Strickland et al., 2023), as well as assessing how parameters relate to other individual-level 

covariates (e.g., eye-tracking, Cavanagh et al., 2014; Fiedler & Glöckner, 2012; Krajbich & 

Rangel, 2011; and neurophysiological measures, such as EEG, MEG, and fMRI, Forstmann et 

al., 2011; Harris & Hutcherson, 2022; Nunez et al., 2023, 2024; Turner et al., 2013; Turner, 

Forstmann, et al., 2019; Turner, Palestro, et al., 2019). EAMs allow mulJple data sources to 

be analysed under a common model and results interpreted in terms of well-supported 

cogniJve theory (Forstmann, Wagenmakers, et al., 2011).  

For an EAM analysis to be useful, quesJons must map to the cogniJve processes 

represented by EAM parameters (i.e., accumulaJon rate, threshold, bias, and nondecision 

Jme). QuesJons are typically posed in a similar manner to tradiJonal confirmatory 
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experimental research, where the goal is to understand the effect of parJcular experimental 

manipulaJons, treatments/intervenJons, or clinical disorders on some measured outcome 

variable (Donkin & Brown, 2018). For example, in a series of studies, Ratcliff and 

collaborators asked whether age-related slowing is due to slower evidence accumulaJon 

(cogniJve impairment hypothesis), higher thresholds (conservaJve responding hypothesis), 

or longer nondecision Jme (physical slowing hypothesis) (Ratcliff et al., 2003, 2006; Ratcliff, 

Thapar, Gomez, et al., 2004; Ratcliff, Thapar, & McKoon, 2004; Thapar et al., 2003). This 

quesJon presents a clear test of three compeJng hypotheses that can be instanJated in 

EAMs and evaluated. To give an example involving a subject-level covariate, Forstmann et al. 

(2008) asked whether cue-induced threshold adjustments (a measure of top-down cogniJve 

control) are correlated with fMRI BOLD signal in the striatum and pre-supplementary motor 

area (two structures hypothesized to be involved in such adapJve control). This quesJon, 

posed in terms of individual-differences correlaJons, presents a clear test of the relaJonship 

between the model-based measure (magnitude of threshold adjustment) and the 

hypothesized neural covariates (striatal and pre-SMA BOLD signal). OperaJonalising 

quesJons in this way is necessary to develop clear, testable hypotheses. That is, hypotheses 

that can be instanJated in an EAM and subjected to model comparison and evaluaJon. We 

explore this topic further in the secJon ‘Mapping Experimental ManipulaJons to EAM 

Parameters’.  

Unsuitable quesJons for standard EAMs are those that involve violaJons of their 

assumpJons. For example, asking quesJons about how parameters change from trial-to-trial 

(violaJng within-condiJon staJonarity) require extended models/methods that allow trial-

wise parameter esJmaJon (Boehm et al., 2014; Ho et al., 2012; Van Maanen et al., 2011). 

FormulaJng good research quesJons requires a sound understanding of theory of both 

EAMs and the target domain. The EAM literature, especially measurement studies where the 

focus is on interpreJng parameter effects (e.g., Boag et al., 2023; Evans et al., 2018; Huang-

Pollock et al., 2017; Ratcliff & Rouder, 2000; Weigard et al., 2018) can be a rich source of 

ideas and help build intuiJon for developing suitable research quesJons. Geong the 

research quesJon right is important because it ulJmately dictates many experimental design 

and analysis choices (e.g., sample size planning and whether to use hierarchical or 

independent-subjects approaches).  
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Planning tasks that meet EAM assump1ons 

Having formulated a research quesJon, focus turns to designing an experimental task 

that will be informaJve for the research quesJon and that meets the processing 

assumpJons of EAMs. In this secJon, we discuss EAM-specific constraints on task design, 

relaJng each back to the relevant EAM assumpJons. Our advice is intended to assist 

researchers in designing tasks that saJsfy the assumpJons of the basic EAM framework but 

allows for judicious deviaJons such as when the focus is on developing a new model 

(Crüwell, Stefan, et al., 2019).  

One decision, one response. As noted earlier, EAMs assume decisions involve a single, 

uninterrupted evidence accumulaJon stage, culminaJng in a discrete response. Evidence is 

assumed to accumulate conJnuously from sJmulus onset to the response. EAM-appropriate 

tasks need clearly defined sJmulus and response onsets that do not overlap with processes 

outside of the response window. SJmulus evidence should be staJc (e.g., of fixed strength 

within a trial) and presented for the enJre duraJon of the response window (from sJmulus 

onset to response iniJaJon). This will ensure that sJmuli provide a constant input to the 

evidence accumulaJon process unJl a response is iniJated, as is assumed in the standard 

models.  

Further, each decision should culminate in a single, discrete response, chosen from a set 

of two or more choice opJons. This is because, in standard EAMs, evidence always 

terminates at a single, discrete response threshold. Consequently, tasks that involve open-

ended response opJons (e.g., free recall tasks) or the possibility of submiong more than 

one response during a single trial (e.g., change of mind tasks, Stone et al., 2022; double 

response paradigms, Evans et al., 2020) require extensions beyond standard EAMs.  

Within-trial sta8onarity. EAMs assume that the parameter seongs of the model do not 

change part way through a decision. Specifically, EAMs assume that threshold and bias 

seongs are unaltered in response to the sJmulus, and most assume that evidence 

accumulates at a constant average rate from sJmulus onset to response onset. When 

designing an experiment, any informaJon intended to affect threshold or bias seongs must 

be presented before the onset of the sJmulus. Likewise, any informaJon not intended to 

affect decision-making and cogniJve control seongs should be kept outside of the response 

window. With regard to experimental design, this means that the evidence input to the 
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decision process should not change during a trial, meaning that decision-relevant sJmulus 

features should be constant throughout a trial (Smith & Lilburn, 2020). For example, sJmuli 

in a perceptual decision-making task should not change in brightness or contrast part-way 

through a trial, since this would require a corresponding change in accumulaJon rate. Tasks 

involving dynamic evidence can be modelled using (computaJonally expensive) extensions 

to the basic EAMs (e.g., Diederich, 2024; Diederich & Trueblood, 2018; Holmes et al., 2016; 

Holmes & Trueblood, 2018).  

Within-condi8on sta8onarity. EAMs also assume staJonarity across trials of the same 

type within a condiJon. This is because model fiong requires trials of the same type to be 

treated as independent observaJons of the same latent cogniJve seongs. Aside from non-

systemaJc trial-to-trial variaJon accounted for in the model’s across-trial variability 

parameters, there should be no systemaJc changes in threshold or mean accumulaJon rate 

across trials of the same type. This assumpJon is important for staJsJcal power and 

measurement precision, which relies on informaJon pooled across many observaJons 

(trials) (Smith & LiVle, 2018). When designing experiments, researchers should aVempt to 

minimize factors that could cause parameters to change systemaJcally across trials. For 

example, accumulaJon rates are known to increase with learning, iniJally rising steeply 

before tapering off to a stable asymptoJc level (e.g., Fontanesi et al., 2019; MileJć et al., 

2021; Pedersen et al., 2017; Sewell et al., 2019). Rates can also decrease with faJgue or 

inaVenJon/task disengagement (Huang-Pollock et al., 2020; Ratcliff & Van Dongen, 2011; 

Walsh et al., 2017). Thresholds may also decrease over the course of an experiment due to 

parJcipants becoming impaJent and trading accuracy for speed in an effort to complete the 

experiment sooner (Hawkins et al., 2012; Larson & Hawkins, 2023).  

Trial-to-trial variability is unavoidable (Aschenbrenner et al., 2018; Rouder et al., 2023) 

due to noise at many levels, including the noise inherent in neural systems (Faisal et al., 

2008; Smith, 2010, 2023) and dynamic fluctuaJons in cogniJve and affecJve state (Schurr et 

al., 2024). Standard EAMs account for such noise sources via their across-trial variability 

parameters. Nevertheless, researchers should take reasonable measures to ensure such 

variability is kept as non-systemaJc as possible.  

S8muli. SJmuli provide the criJcal input to the decision-making process. SJmuli supply 

the evidence upon which decisions are based and largely determine the cogniJve domain 

engaged by a task. For example, in a psychophysics task, evidence might be based on the 
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objecJve luminance values of sJmuli (e.g., Sewell & Smith, 2012; van Ravenzwaaij et al., 

2020). By contrast, evidence in a preferenJal choice task could be subjecJve value elicited 

by viewing images of food items (e.g., Huseynov & Palma, 2021; Milosavljevic et al., 2010). 

In working memory and categorizaJon tasks, evidence may derive from the strength with 

which items are acJvated in memory (Ratcliff, 1978; Shadlen & Shohamy, 2016) or the 

strength of learned associaJons between sJmuli and expected response outcomes (DuJlh et 

al., 2009; DuJlh, Krypotos, et al., 2011; MileJć et al., 2021; Sewell et al., 2019). As noted, 

the evidence supplied by sJmuli should be fixed within a trial (i.e., unchanging in strength 

for the duraJon of the trial) to provide a constant input to the decision process.  

Across trials or blocks, sJmuli are oken the target of manipulaJons designed to affect 

the signal-to-noise raJo of the evidence entering the decision process (e.g., discriminability, 

difficulty, etc.). When designing experiments, it is important to calibrate sJmuli to be of an 

appropriate difficulty level. This is because EAMs can struggle to fit floor effects (chance-

level accuracy) and ceiling effects (e.g., near-perfect accuracy with too few errors) (DuJlh, 

Wagenmakers, et al., 2011). Floor effects occur when a task is too difficult, and usually mean 

that parJcipants cannot discriminate between choice opJons. Consequently, parJcipants 

may be using a guessing strategy rather than sampling evidence as assumed in EAMs. By 

contrast, ceiling effects occur when a task is too easy, causing very few incorrect responses 

to be observed. As we discuss in the secJon on sample size planning, it is important to elicit 

enough error observaJons for reliable model esJmaJon (Lüken et al., 2023). We 

recommend calibraJng sJmuli to produce error rates of 5-35% (DuJlh, Wagenmakers, et al., 

2011; Lüken et al., 2023; Ratcliff & Childers, 2015). CalibraJon can be achieved through pilot 

tesJng or via more advanced methods that perform individualised calibraJon based on task 

performance (e.g., Myung et al., 2009; Myung et al., 2013; Yang et al., 2021).  

Response modality. Standard EAMs assume that the onset of the response coincides 

with terminaJon of the evidence accumulaJon process (Figure 2). That is, the decision and 

motor response processes occur sequenJally (i.e., a motor response is only iniJated once a 

decision has been reached). As such, we recommend using response modaliJes with a 

sharp, clearly defined response onset and short execuJon Jmes, such as manual key presses 

(Mean = 160 ms [120—230 ms]) or saccades (Mean = 60 ms [30—100 ms]) (Bompas et al., 

2023). Other response modaliJes such as computer mouse or foot pedal are also possible 

(e.g., Leontyev & Yamauchi, 2021; Michmizos & Krebs, 2014). However, responses using such 
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modaliJes may produce relaJvely variable response onsets (and consequently less precise 

esJmates of nondecision Jme).  

The most criJcal consideraJon is that the chosen modality should enable the precise 

measurement of RT. For most purposes, a standard computer keyboard provides sufficiently 

precise RT measurements (up to the limit of the internal refresh rate). However, highly 

precise (i.e., to the millisecond) Jming can be obtained with specialized computer systems 

and the use of precision-Jming sokware/apparatus (Bridges et al., 2020; Plant et al., 2002). 

We recommend using lek—right symmetric key arrangements [with the layout 

counterbalanced across parJcipants, if appropriate to do so; see secJon ‘SJmulus—

Response (Decision Outcome) Mapping’]. This allows for the highly desirable assumpJon of 

a common nondecision Jme across responses (and potenJally across subjects).  

 

Mapping experimental manipula1ons to EAM parameters 

It is important to establish clear theoreJcal links between experimental manipulaJons 

(e.g., speed vs. accuracy instrucJons, task difficulty, or working memory load) and their 

expected effects on EAM parameters and data. Understanding the behavioural signatures of 

experimental manipulaJons can give confidence that a manipulaJon is working as intended. 

Becoming familiar with EAM theory and reading published EAM studies can help build 

intuiJon for which model parameters are likely to be affected by a given manipulaJon. Much 

of the key theoreJcal EAM literature and a variety of applicaJon studies are cited in this 

arJcle.  

Not all EAM parameters will be relevant to every analysis. For example, a researcher 

studying consumer choice preferences (e.g., preference for one product over another) may 

be uninterested in nondecision Jme but be highly interested in using accumulaJon rates to 

measure preference strength and starJng point (or thresholds) to measure choice biases 

(Busemeyer & Townsend, 1993; Cerracchio et al., 2023; Krajbich et al., 2012, 2015). 

AddiJonally, it is common pracJce to not esJmate variability parameters (e.g., by fixing 

them to zero) unless they are needed to account for certain data features (e.g., fast guesses) 

(Lerche & Voss, 2016; Ratcliff & Rouder, 1998).  

Below, we briefly review common manipulaJons that have been used to selecJvely 

influence each standard EAM parameter (see Box 1). The primary uses of each model 
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parameter, common mappings to experimental manipulaJons, and expected effects on 

behaviour are summarized in Table 2.  

S1mulus—response (decision outcome) mapping. Some tasks will have sJmulus—

response mappings that naturally correspond to objecJvely correct or incorrect decision 

outcomes (e.g., pressing the lek arrow key in response to a predominantly lek-moving 

sJmulus). However, standard EAMs can easily accommodate tasks with subjecJve or 

probabilisJc sJmulus—response mappings (e.g., preferenJal choice tasks, probabilisJc 

categorizaJon tasks, and tasks with probabilisJc rewards/payoffs; Lee & Usher, 2023; 

Milosavljevic et al., 2010; Sewell & Stallman, 2020). In relaJve evidence models (e.g., 

Ratcliff, 1978; Wagenmakers et al., 2007), which are limited to two-choice tasks, each 

threshold is mapped to one of the possible response opJons, and a single accumulaJon rate 

measures the difference in evidence between opJons. However, in race models (e.g., Brown 

& Heathcote, 2008; Tillman et al., 2020), which can accommodate an arbitrary number of 

response opJons, each latent response is assigned an accumulator with its own threshold 

and an accumulaJon rate represenJng the absolute evidence for that response. Race 

models can also instanJate more complex decision rules (e.g., AND and OR rules) used for 

combining mulJple sJmulus aVributes into a final decision (e.g., Fific et al., 2010; LiVle et 

al., 2018; van Ravenzwaaij et al., 2020).  

Accumula8on rate. AccumulaJon rates measure the strength (signal-to-noise raJo) of 

evidence extracted from the sJmulus (e.g., salience, preference strength, or discriminability 

relaJve to other choice opJons; Gold & Shadlen, 2007; Palmer et al., 2005; Ratcliff & 

McKoon, 2008). Rates are sensiJve to the processing abiliJes of the decision maker 

(Schmiedek et al., 2007) and the amount of aVenJon or cogniJve resources deployed to the 

task (i.e., the degree to which the parJcipant is paying aVenJon; Boag et al., 2023; Castro et 

al., 2019; Eidels et al., 2010). Holding one constant allows measurement of the other (e.g., 

for equivalent sJmuli, different rates reflect differences in aVenJon/capacity).  

In a typical experiment, rates are used to account for manipulaJons of evidence strength 

(e.g., low- versus high-discriminability sJmuli), aVenJon or processing capacity, and task 

difficulty. That is, manipulaJons affecJng how easily sJmuli are perceived and/or processed 

(Mulder et al., 2014; Palmer et al., 2005; Ratcliff & McKoon, 2008; Smith et al., 2015; Smith 

& Sewell, 2013). This is accomplished by esJmaJng a different accumulaJon rate for each 

difficulty level (Ratcliff & Rouder, 1998). Behaviourally, a faster accumulaJon rate predicts 



GUIDE TO EVIDENCE ACCUMULATION MODELLING 

 18 

faster responses and fewer errors, while a slower rate predicts the converse (Ratcliff & 

McKoon, 2008). AccumulaJon is typically faster for easier decisions (Ratcliff & Rouder, 1998) 

and faster for responses associated with higher reward or subjecJve value (Busemeyer & 

Townsend, 1993; Krajbich et al., 2012, 2015). Rates track the strength of associaJve 

relaJonships learned via feedback (e.g., Fontanesi et al., 2019; MileJć et al., 2021; Pedersen 

et al., 2017; Sewell et al., 2019) and the acJvaJon strength of items retrieved from memory 

(Ratcliff, 1978; Ratcliff & McKoon, 1988). Further, these mappings hold in more complex 

naturalisJc tasks (for a review, Boag et al., 2023).  

Threshold. Thresholds are a locus of proacJve cogniJve control (Strickland et al., 2018). 

Thresholds control the amount of evidence needed to trigger a response and thus measure 

response cauJon or speed—accuracy seongs. As noted earlier, EAMs assume thresholds are 

set in advance of sJmulus onset (i.e., not adjusted based on features of the current sJmulus, 

since it would be circular for the threshold used to idenJfy a sJmulus to depend on knowing 

the idenJty of that sJmulus). In other words, thresholds cannot be altered based on 

informaJon that was unknown before the trial began (Donkin, Averell, et al., 2009). 

Consequently, manipulaJons intended to affect threshold or bias seongs must be presented 

before the onset of a trial/sJmulus. This is typically achieved using pre-trial cues or blocked 

instrucJons (e.g., Forstmann et al., 2008; Katsimpokis et al., 2020), the aim of which is to 

allow parJcipants to make strategic adjustments (e.g., adopt different threshold/bias 

seongs) before encountering the upcoming sJmulus.  

In a typical experiment, thresholds are used to explain speed—accuracy trade-off effects 

whereby individuals set lower thresholds when less Jme is available, and higher thresholds 

when more Jme is available (Bogacz et al., 2010; Evans, Hawkins, et al., 2020; Forstmann et 

al., 2008; Frazier & Yu, 2007; Heitz & Schall, 2012; Katsimpokis et al., 2020; Rae et al., 2014; 

Ratcliff & McKoon, 2008). Behaviourally, higher thresholds predict slower, more accurate 

decisions, while lower thresholds predict faster, less accurate decisions (Ratcliff & Rouder, 

1998). In pracJce, thresholds are sensiJve to task importance and response bias 

manipulaJons, in which parJcipants set lower thresholds for prioriJzed/more 

rewarding/higher frequency responses and higher thresholds for non-prioriJzed/less 

rewarding/lower frequency responses (Boag et al., 2019; Mulder et al., 2012; Strickland et 

al., 2018; Trueblood et al., 2021; for a review, Cerracchio et al., 2023). Thresholds are 
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further implicated in post-error slowing (Damaso, Castro, et al., 2022; Damaso, Williams, et 

al., 2022), a kind of trial-to-trial speed—accuracy trade-off (Larson & Hawkins, 2023).  

Star8ng point. As noted in the preceding paragraph, racing accumulator models measure 

biases for one response over another by allowing compeJng response opJons to have 

different thresholds. By contrast, relaJve evidence models measure response biases by 

assessing how the starJng point of the evidence accumulaJon process deviates from the 

neutral midpoint between the two response boundaries (Leite & Ratcliff, 2011; Ratcliff & 

McKoon, 2008; see also, Edwards, 1965). Like thresholds, the evidence starJng point is 

assumed to be under the control of the decision maker and manipulaJons intended to affect 

starJng point must be presented before sJmulus onset. Behaviourally, deviaJng from the 

neutral midpoint makes responses for the favoured (closer) threshold faster and more 

accurate while making responses for the non-favoured (further) threshold slower and less 

accurate (Ratcliff & McKoon, 2008; for a review, Cerracchio et al., 2023). In experiments, 

starJng point biases have been used to measure biases in police officer’s decisions to shoot 

lighter- versus darker-skinned suspects (Johnson et al., 2018, 2021; Pleskac et al., 2018) and 

to quanJfy individuals’ tendency to idenJfy items as weapons versus non-weapons (Todd et 

al., 2021). StarJng point has also been used to understand how various response biases are 

affected by factors such as heightened Jme pressure (Chen & Krajbich, 2018), changes in 

sJmulus prevalence (Trueblood et al., 2021; see also, Leite & Ratcliff, 2011), and payoff 

structure (Leite & Ratcliff, 2011).  

Nondecision 8me. Nondecision Jme measures the sum of the Jme taken to encode the 

sJmulus (at sJmulus onset) and Jme to produce the motor response (at response onset) 

(Bompas et al., 2023). Nondecision Jme is sensiJve to the difficulty of both the encoding 

and motor responding stages. For example, it is sensiJve to changes in low-level visual 

features of sJmuli and the complexity or force required to produce the motor response 

(Bompas et al., 2023; Gomez et al., 2015; Ho et al., 2009; Sandry & Ricker, 2022; Servant et 

al., 2016; Voss et al., 2004; Weindel, Gajdos, et al., 2021). Although encoding and motor RT 

cannot be separately idenJfied in standard EAMs, they may be disentangled experimentally 

(e.g., by holding sJmulus properJes constant while manipulaJng response modality or vice-

versa). Empirically, nondecision Jme shiks RT distribuJons in Jme without affecJng 

accuracy or the shape or scale of the distribuJon (Ratcliff & McKoon, 2008).  
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In experimental seongs, nondecision Jme has been used to measure potenJal 

differences in encoding or motor response producJon (Ratcliff, Thapar, Gomez, et al., 2004; 

Van Maanen et al., 2016). For example, Ratcliff et al. (2004) found that older parJcipants 

produced reliably slower nondecision Jmes than did younger parJcipants (see also, Van 

Maanen et al., 2016). Saccadic eye movements have been found to elicit reliably shorter 

nondecision Jmes than manual key-press responses (Bompas et al., 2023; Ho et al., 2009). 

Nondecision Jme has also been found to be shorter under condiJons of greater urgency 

(e.g., Rae et al., 2014; Ratcliff, 2006), potenJally reflecJng a tendency to encode sJmuli less 

deeply when under Jme pressure (e.g., Palada et al., 2018, 2019). However, we cauJon that 

nondecision Jme is someJmes esJmated less reliably than other EAM parameters (Lerche & 

Voss, 2018), and can be highly variable across individuals, condiJons, and tasks (Bompas et 

al., 2023). Refining EAMs account of nondecision Jme is a topic of ongoing model 

development work (Bompas et al., 2023; Kelly et al., 2021; Servant et al., 2021).  

Variability parameters. The across-trial variability parameters (i.e., in accumulaJon rate, 

starJng point, and nondecision Jme) are less frequently used for measurement or inference. 

Rather, they allow the model to account for a number of commonly observed features of 

behavioural data, such as crossovers in the speed of correct and incorrect responses (Ratcliff, 

2013; Ratcliff & Rouder, 1998; Ratcliff & Smith, 2004).  

Across-trial variability in accumulaJon rate can account for slow errors (Ratcliff, 1978). 

This is because trials with faster-than-average accumulaJon produce fast responses with 

very few errors. By contrast, trials with slower-than-average accumulaJon produce slow, 

error-prone responses, which together results in disproporJonately many slow errors 

(Lerche & Voss, 2016). In experiments, across-trial rate variability can be used to account for 

manipulaJons affecJng variability in evidence extracted from the sJmulus (Starns, 2014; Yap 

et al., 2012), and to idenJfy factors that lead to increased uncertainty (greater variability) in 

decision making (Palada et al., 2020; Starns, 2014).  

Across-trial variability in starJng point can account for fast errors (Laming, 1968). This is 

because when the accumulaJon process starts closer to the threshold for the incorrect 

latent response, errors become both faster and more frequent. By contrast, when 

accumulaJon starts closer to the threshold for the correct latent response, errors become 

slower and less frequent, resulJng in disproporJonately many fast errors (Lerche & Voss, 

2016). Including starJng point variability alongside rate variability allows the model to 
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account for interacJons (crossovers or reversals) between correct and incorrect RT (e.g., fast 

errors in some cells and slow errors in others; Ratcliff et al., 1999; Ratcliff & Rouder, 1998; 

Wagenmakers, Ratcliff, et al., 2008). StarJng point variability may be used to account for 

factors affecJng uncertainty (variability) in prior beliefs or expectaJons (Mulder et al., 2012).  

Across-trial variability in nondecision Jme can account for changes in the leading edge 

(e.g., the 0.1 quanJle) of RT distribuJons (e.g., Ratcliff et al., 2004; Ratcliff & Tuerlinckx, 

2002), including those caused by contaminant processes such as fast guesses (Ratcliff & 

Tuerlinckx, 2002). This is because nondecision Jme variability faVens the tails (i.e., 

decreases skew) of RT distribuJons (Lerche & Voss, 2016), making the model more robust to 

fast contaminants. Models with nondecision Jme variability predict a shallower onset of 

responding than models without. Empirically, nondecision Jme variability accounts for 

variability in encoding and motor response producJon (Bompas et al., 2023).  

We reiterate that across-trial variability parameters tend to be esJmated less reliably 

than other parameters (Boehm et al., 2018; Vandekerckhove & Tuerlinckx, 2007; van 

Ravenzwaaij & Oberauer, 2009; Lerche & Voss, 2016; Lerche, Voss, & Nagler, 2017; Yap, 

Balota, et al., 2012). Moreover, at least one rate variability parameter is typically held fixed 

in at least one design cell in order to saJsfy the scaling property of EAMs (Donkin, Brown, et 

al., 2009). In racing accumulator models, a common choice is to set across-trial rate 

variability to 0.1 or 1. Although some work suggests that differences in across-trial variability 

in accumulaJon rate and/or nondecision Jme can be recovered reasonably reliably in some 

cases (e.g., Boehm et al., 2018; Starns & Ratcliff, 2014), there is evidence suggesJng 

variability parameters trade-off with other model parameters and can exhibit non-

staJonarity over the course of an experiment (e.g., DuJlh et al., 2011; Evans et al., 2018; 

Evans & Hawkins, 2019). EsJmaJon and reliability issues with variability parameters can be 

improved by fixing parameters (e.g., by constraining variability parameters to a single 

esJmated value or removing them enJrely by seong variability to zero, Boehm et al., 2018; 

Lerche & Voss, 2016; van Ravenzwaaij et al., 2017). Moreover, some EAM sokware simply 

does not allow for the esJmaJon of across-trial variability (e.g., EZ-diffusion, DuJlh et al., 

2013; Grasman et al., 2009; Schmiedek et al., 2007; Souza & Frischkorn, 2023; van 

Ravenzwaaij et al., 2012, 2017; Wagenmakers et al., 2007, 2008), or requires variability to 

be fixed across parJcipants (e.g., HDDM, Wiecki et al., 2013). Overall, we recommend 
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exercising cauJon if answering the research quesJon relies on inferences based on 

potenJally unreliable variability parameters.  

In the next secJon, we outline the elements of a single trial in a typical EAM experiment 

and consideraJons for task design. 

 

Table 2. Mapping experimental manipulaJons to EAM parameters. 

Parameter Common manipula*ons Data effect 

Accumula.on rate S.mulus discriminability; 

subjec.ve task difficulty; strength 

of preference; strength of 

memory trace; a[en.on; effort 

Increasing accumula.on rate 

produces faster, more accurate 

decisions and reduces RT 

variability.  

Threshold Speed—accuracy trade-off; 

instruc.ons; cogni.ve control; 

urgency; choice biases (in racing 

accumulator models) 

Increasing threshold/boundary 

separa.on produces slower, more 

accurate decisions, and increases 

RT variability.  

Star.ng point Response biases; s.mulus 

prevalence/base rate; 

reward/payoff structure; prior 

knowledge and expecta.ons 

Star.ng closer to a boundary 

makes that response occur more 

quickly and frequently than the 

non-favoured response.  

Nondecision .me Accounts for complexity of 

encoding and the complexity or 

difficulty of producing the motor 

response. 

Shics RT distribu.ons by a 

constant amount without 

affec.ng accuracy or the shape 

and skewness of the distribu.on. 

Rate variability Accounts for decision 

uncertainty/evidence variability 

and slower-than-average errors. 

Greater across-trial rate variability 

increases the propor.on of slow 

errors.  

Star.ng point variability Accounts for variability in prior 

beliefs or expecta.ons, and 

faster-than-average errors. 

Greater star.ng point variability 

increases the propor.on of fast 

errors. 

Nondecision .me variability Account for variability in motor 

responding and RT distribu.ons 

with reduced skewness (e.g., a 

shallower onset of responding 

due to fast contaminants).  

Greater nondecision .me 

variability ‘smears’ the RT 

distribu.on along the .me axis, 

crea.ng fa[er tails (i.e., greater 

probability of both faster and 

slower responses) and shallower 

onset of responding.  
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Box 1. Selec0ve influence.  

Selec/ve influence refers to the idea that an experimental manipula/on should directly and 

selec/vely engage the target cogni/ve process. That is, a manipula/on should affect only the EAM 

parameter it is theore/cally expected to affect, and it should not affect other parameters (Jones & 

Dzhafarov, 2014). Selec/ve influence was neatly demonstrated by Ratcliff and Rouder (1998), who 

orthogonally manipulated decision difficulty and speed/accuracy instruc/ons. Decision difficulty 

was found to selec/vely influence diffusion model accumula/on rates, whereas speed/accuracy 

instruc/ons selec/vely influenced thresholds (see also, Forstmann et al., 2011; Hawkins et al., 

2012; Starns & Ratcliff, 2010; Usher & McClelland, 2001; Wagenmakers et al., 2008; but see, 

Katsimpokis et al., 2020). Subsequent work demonstrated selec/ve influence for other 

parameters. Changing the rewards/payoffs associated with different responses selec/vely 

influenced star/ng point bias (Voss et al., 2004) while changing response modality (e.g., saccades 

vs. manual key presses) selec/vely affected nondecision /me (Ho et al., 2009), consistent with the 

theorized role of those parameters.  

Selec/ve influence is desirable because it greatly simplifies interpre/ng the results of an EAM 

analysis. However, it is not strictly necessary. Many theore/cally interes/ng viola/ons of selec/ve 

influence have been reported. In one prominent example, Rae et al. (2014) demonstrated that an 

urgency manipula/on affected both accumula/on rate and thresholds (a finding that has since 

been well replicated, e.g., Boag et al., 2019; Heathcote & Love, 2012; Palada et al., 2020; Starns et 

al., 2012; see also, Vandekerckhove et al., 2008). Yet other work has shown that speed—accuracy 

instruc/ons can addi/onally affect nondecision /me (Arnold et al., 2015; de Hollander et al., 2016; 

Donkin, Brown, Heathcote, et al., 2011; Du/lh et al., 2019; Heathcote & Love, 2012; Ho et al., 

2012; Huang et al., 2015; Kelly et al., 2021; Palmer et al., 2005; Ratcliff, 2006; Rinkenauer et al., 

2004; Servant et al., 2018, 2021; Voss et al., 2004; Weindel, Anders, et al., 2021; Weindel, Gajdos, 

et al., 2021).  

Overall, this work suggests that inappropriately assuming selec/ve influence may lead to 

misleading conclusions or to real effects being missed. We recommend comparing models that do 

and do not assume selec/ve influence to ensure the extra complexity of more flexible models is 

warranted (see sec/on ‘Comparing and Evalua/ng EAMs’).  
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Trial structure and event 1ming 

One of the most important design consideraJons for model plausibility is how trials are 

structured in terms of the Jming of events within a trial (e.g., cue and sJmulus 

presentaJon). For an EAM to be a plausible model of the true decision process, the 

sequence and Jming of events within a trial must match the processing assumpJons of the 

model. A typical trial structure/sequence of a standard EAM is illustrated in Figure 2. In the 

following subsecJons, we discuss the components that make up a typical trial, their 

purpose, and common piralls surrounding their implementaJon. Note that the advice 

presented here allows for judicious deviaJons, such as when developing a model or using an 

extended EAM with different processing assumpJons.  

 

 
Figure 2. Structure of a typical decision trial for an EAM-appropriate task. The trial begins with a 

cue (e.g., instruc/ng the par/cipant to emphasize response speed or accuracy), followed by a 

fixa/on interval of variable (unpredictable) dura/on. Next, a s/mulus is presented (s/mulus onset) 

con/nuously un/l either the par/cipant makes a response (response onset), or the trial /me limit 

expires (which produces a nonresponse that is truncated from the RT distribu/on). Feedback 

indica/ng that the par/cipant responded too slowly is then displayed. Finally, an intertrial interval 

gives the par/cipant /me to prepare for the next trial. The theore/cal accumula/on process is 

illustrated by the domed arrow. Observing the outcome of many such decision trials produces a 

distribu/on of RTs with a characteris/c posi/ve skew (the density of which is illustrated in grey at 

the top of the figure). The presenta/on dura/ons shown are sugges/ons only and should be 

calibrated to the specific task.  
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Cue. In some studies, trials begin with a cue that indicates how parJcipants should 

perform the upcoming trial (Figure 2). The cue interval is an opportunity to present 

informaJon intended to affect the decision maker’s processing and cogniJve control seongs 

(e.g., thresholds and biases) prior to the decision. For example, presenJng the text “Fast!” or 

“Accurate!” may signal that parJcipants should respond either quickly or accurately, 

respecJvely (e.g., Forstmann et al., 2008; Katsimpokis et al., 2020). Other kinds of cues may 

direct parJcipants’ gaze to a parJcular item or spaJal locaJon (allowing comparison of 

aVended versus unaVended performance, e.g., Liu et al., 2009; Logan et al., 2023; Smith et 

al., 2015) or provide prior informaJon intended to set up biases in the decision maker 

before encountering the sJmulus (Karayanidis et al., 2009; Mulder et al., 2012; Trueblood et 

al., 2021).  

Fixa8on. FixaJon intervals serve the twofold purpose of concentraJng parJcipants’ eye 

gaze/aVenJon on the locaJon of the upcoming sJmulus (usually at the centre of the display) 

and of allowing Jme for residual processes (such as those stemming from the preceding cue 

or trial) to complete and return to baseline to avoid process overlap (Pashler, 1994). In a 

typical fixaJon interval, parJcipants fixate their gaze on a centrally presented fixaJon cross 

while awaiJng the sJmulus. One issue that can arise with fixed-duraJon fixaJon intervals is 

that parJcipants learn to anJcipate the onset of the upcoming sJmulus. ParJcipants’ 

expectaJon of the onset of the next trial increases over Jme according to a hazard funcJon 

(Luce, 1991). This can lead some parJcipants to prematurely sample evidence in anJcipaJon 

of the sJmulus, resulJng in disproporJonate anJcipatory responses for longer intervals 

(Oswal et al., 2007), which produces biased esJmates of nondecision Jme (Jepma et al., 

2012). To avoid this problem, we recommend sampling the duraJon of fixaJon intervals 

from an exponenJal (or pseudo-exponenJal) distribuJon (e.g., with mean around 0.7 s and 

range of about 0.2—5 s) to avoid implausibly short intervals and excessively long waiJng 

Jmes (e.g., Evans & Hawkins, 2019).  

S8mulus onset. Following the fixaJon interval, the sJmulus is presented. EAMs assume 

that sJmulus onset represents the beginning of the evidence accumulaJon process (plus the 

Jme taken to encode the sJmulus; Bompas et al., 2023). This structural constraint makes 

certain tasks unsuitable for EAMs. For example, interrogaJon paradigms are inappropriate 

for standard EAMs because the decision maker first views (and presumably accumulates 

evidence about) the sJmulus but must wait unJl prompted to give a response (Bogacz et al., 
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2006; Ratcliff, 2006). One reason this is problemaJc is because the evidence accumulaJon 

process may terminate before the response prompt is presented, making it unclear what 

cogniJve processes might have occurred in the intervening Jme (or what the observed RT is 

measuring). In sum, for the standard framework, it is crucial that the evidence accumulaJon 

process runs uninterrupted from the onset of the sJmulus unJl the response.  

Response window. The onset of the sJmulus marks the beginning of the response 

window, which ends either when a response is submiVed or upon expiry of a predefined 

deadline. The response window should allow enough Jme for parJcipants to process and 

respond to the sJmuli, and thus should be calibrated to the RT (and RT variability) of actual 

parJcipants performing the proposed task. An inappropriately calibrated response window 

can lead parJcipants to adopt undesirable/contaminant response strategies that are not 

accounted for in standard EAMs. For example, an excessively short response window may 

lead to a high proporJon of fast guesses or cause slower responses to be truncated from the 

tail of RT distribuJons (i.e., responses falling outside of the response window, as illustrated 

in Figure 2). These processes can produce RT distribuJons that lack the characterisJc 

posiJve skew and thus cannot be fit by standard EAMs (Evans, Hawkins, et al., 2020). 

Ignoring these issues can compromise parameter esJmaJon (Verdonck & Tuerlinckx, 2016). 

We recommend pilot tesJng novel tasks to find an appropriate response window, since the 

opJmal window will depend upon the task.  

Another consideraJon is whether the average duraJon of decisions in the experimental 

task is appropriate for EAMs. ParJcipants making perceptual decisions about simple 

psychophysical sJmuli can usually respond within a 1.5 second response window. By 

contrast, tasks typical of cogniJve psychology (e.g., lexical decision, preferenJal choice) may 

require up to 4 seconds to respond (Glickman & Usher, 2019), and more complex naturalisJc 

tasks can take even longer (e.g., up to 10 seconds, Boag et al., 2023; Boehm et al., 2021). It is 

someJmes advised that standard EAMs be applied only to relaJvely rapid choice tasks (e.g., 

mean RT < 1.5 s, Ratcliff et al., 2004; Ratcliff & McKoon, 2008). This is intended to ensure 

that the assumpJon of a single conJnuous evidence accumulaJon process is upheld, since 

violaJons of the single stage assumpJon become increasingly plausible for decisions that 

unfold over longer Jmescales. If longer decisions do in fact involve different underlying 

processes, such as mulJple processing stages, then they may not be accurately represented 
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by a standard single-stage EAM, rendering the model difficult to interpret (Heathcote, 

Brown, et al., 2015).  

Some work suggests that standard EAMs may be a valid measurement model of more 

complex naturalisJc decisions that unfold over longer Jmescales (Boehm et al., 2021), even 

when the assumpJon of a single accumulaJon process is explicitly violated (Boag et al., 

2023; Lerche & Voss, 2019). For example, Lerche and Voss (2019) found good fits to 

simulated longer-RT data (mean RT ≈ 7.4 seconds) in which the single accumulaJon process 

assumpJon was violated. Empirical work has also found good fits to decisions with relaJvely 

long RTs (e.g., Aschenbrenner et al., 2016, Experiment 2; Glickman & Usher, 2019). 

Measurement-focussed applicaJon studies have also reported good fits of standard EAMs to 

more complex naturalisJc tasks (e.g., air-traffic control, mariJme surveillance, and forensic 

decision making) with longer RTs (2 s < mean RT < 10 s; for a review, Boag et al., 2023). In 

this work, experimental manipulaJons were found to affect model parameters in the same 

way in longer- and shorter-RT studies (i.e., task difficulty and sJmulus discriminability effects 

mapped to accumulaJon rates; speed—accuracy trade-off, cogniJve control, and bias effects 

mapped to thresholds and starJng point).  

Overall, when designing a novel task, researchers should consider whether the 

assumpJon of a single uninterrupted accumulaJon process is appropriate, especially in 

longer-RT tasks. If not, the researcher may turn to extended EAMs designed to account for 

phenomena associated with longer RTs, such as models that allow for slow contaminant 

processes (e.g., Dolan et al., 2002; Ratcliff & Tuerlinckx, 2002), randomly slow or non-

terminaJng accumulaJon processes (Damaso, Castro, et al., 2022; Howard et al., 2020; 

Tillman et al., 2017), off-task mind wandering (Hawkins et al., 2019; Hawkins, MiVner, et al., 

2015), and mulJple processing stages (LiVle, 2012; Provost & Heathcote, 2015; Shahar et al., 

2019).  

Post-response interval. The post-response interval signals that the trial has ended, and a 

response recorded. The post-response interval provides an opportunity to display correcJve 

feedback. For example, excessively fast or slow responding can be discouraged by displaying 

a warning message (e.g., “Too fast/slow!”) following such responses. Warning messages can 

be accompanied by a Jmeout interval that delays the onset of the next trial (e.g., by 1—5 s) 

to further encourage compliance (e.g., Evans & Hawkins, 2019). Such feedback can help to 

keep mean RT within the response window.  
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Providing feedback on performance (e.g., accuracy or points/rewards for correct 

responses) on experimental trials may introduce non-staJonariJes (e.g., post-error 

speeding/slowing and learning effects) that are not accounted for in the standard EAM 

framework (MileJć et al., 2020, 2021). Aside from during training (see secJon ‘Task 

Training’), we advise against providing performance feedback for experimental trials, unless 

explicitly modelling learning with an extended EAM (e.g., Fontanesi et al., 2019; MileJć et 

al., 2021; Pedersen et al., 2017). However, since providing no feedback at all may cause 

parJcipants to become disengaged from the task, it is possible to give summarized 

performance feedback (e.g., mean accuracy or overall points scored) following each block of 

trials. ‘Gamifying’ experiments in this way can increase parJcipant engagement (Lumsden et 

al., 2016) while avoiding undesirable non-staJonariJes associated with trial-to-trial feedback 

(e.g., learning and adaptaJon). Moreover, such performance summaries can double as an 

intermiVent check that parJcipants are paying aVenJon and performing the task as 

instructed.  

Intertrial interval. Intertrial intervals refer to the Jme between trials. The intertrial 

interval gives parJcipants Jme to ‘reset’ and to concentrate their aVenJon on the upcoming 

trial. The intertrial interval is designed to prevent process overlap (Pashler, 1994) and to 

minimize other potenJal sources of proacJve interference, such as sequenJal or carry-over 

effects stemming from events that occurred on previous trials (e.g., Aschenbrenner et al., 

2018; Balota et al., 2018; Jones et al., 2013). Avoiding such interference is important for 

preserving staJonarity, both within and across trials (i.e., for treaJng all trials within a 

condiJon as independent observaJons of the same underlying process). Intertrial intervals 

can be open-ended (e.g., where the parJcipant must press a key to iniJate the next trial), 

allowing for self-paced breaks, or can automaJcally progress to the next trial aker some 

delay.  

 

Sample size planning 

Trial numbers. Researchers should plan to collect enough observaJons (trials) per 

parJcipant in each experimental condiJon for reliable modelling. Doing so is important 

because sufficient data are required to obtain precise and unbiased individual measurement 
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of the EAM parameters represenJng each parJcipant’s latent decision processes (Smith & 

LiVle, 2018).  

Much methodological work has explored how the number of trials used in fiong affects 

the reliability (e.g., bias, variability, and recoverability) of EAM parameters (Alexandrowicz & 

Gula, 2020; Lerche et al., 2017; Lerche & Voss, 2016; Lüken et al., 2023; Ratcliff & Childers, 

2015; Ratcliff & Tuerlinckx, 2002; van Ravenzwaaij & Oberauer, 2009; Vandekerckhove & 

Tuerlinckx, 2007; Visser & Poessé, 2017; Wagenmakers et al., 2007; Wiecki et al., 2013). 

These studies broadly agree that around 200 trials per condiJon is sufficient to achieve 

reasonably precise and unbiased individual-level measurement. In general, more trials afford 

greater measurement precision and thus greater power to detect effects, since (Gaussian) 

measurement variance decreases with the square root of the number of measurements 

(trials) (Ratcliff & Tuerlinckx, 2002). However, they are diminishing returns, with simulaJons 

suggesJng there is liVle to gain from collecJng more than about 500 trials per condiJon 

(Lerche et al., 2017).  

When determining the number of trials to collect, a criJcal quesJon is whether there will 

be sufficient observaJons of the least frequently occurring trial type in the data (Donkin, 

Brown, & Heathcote, 2011). In most designs, the rarest kind of trials are incorrect responses 

to the most easily discriminable sJmuli (i.e., incorrect responses to decisions typically made 

with high accuracy). However, other infrequent sJmulus-response combinaJons are 

possible, such as those that arise in paradigms involving the presentaJon of a rare sJmulus 

or event on a small subset of trials (e.g., Einstein & McDaniel, 1990; Loughnane et al., 2019; 

Strickland et al., 2018). Lüken et al. (2023) recommend obtaining error rates of at least 5% to 

ensure reliable parameter esJmaJon with the standard diffusion (Ratcliff, 1978) and linear 

ballisJc accumulator models (Brown & Heathcote, 2008). With 200 trials, a 5% error rate 

corresponds to 10 observaJons of incorrect responses. This number should be taken as a 

minimum: Ten error observaJons provided just enough informaJon about the shape of the 

error RT distribuJon to idenJfy the model. Fiong to data with smaller error rates is risky 

because the greater esJmaJon uncertainty can make some parameters (e.g., rates and 

thresholds) unidenJfiable (Lüken et al., 2023).  

We cauJon that although 10 error observaJons may provide the bare minimum 

constraint needed to idenJfy the models (e.g., by locaJng the mean of the incorrect RT 

distribuJon), many more observaJons are needed to make reliable inferences about 
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parameters that rely on informaJon about the variance and skewness of the error RT 

distribuJon (e.g., the starJng point and rate variability parameters for the incorrect latent 

response). Parameter recovery simulaJons can help determine how many trials (and 

parJcipants) are needed to reliably measure a given effect (Heathcote, Brown, et al., 2015; 

White et al., 2018; Wilson & Collins, 2019). The simulaJon procedure is as follows: 1) set 

model parameters to values representaJve of the effect of interest, 2) simulate many 

syntheJc parJcipants (datasets), 3) fit the model to the syntheJc data, and 4) assess how 

well the recovered parameters match the known data-generaJng values. Doing this for a 

range of effect sizes and for different numbers of trials and parJcipants can help determine 

the most appropriate design for achieving a desired level of measurement precision (see 

secJon ‘Parameter Recovery’).  

Clearly, there is no one-size-fits-all soluJon to trial number planning, since it depends 

upon the goals of the researcher, the size of the target effect, and properJes of the model. 

Several thousand observaJons may be needed to make reliable inferences about across-trial 

variability parameters, or about parameters associated with rare responses (e.g., the 

accumulaJon rate of the incorrect latent response). In general, we recommend researchers 

use parameter recovery simulaJons to guide trial number planning (Heathcote, Brown, et 

al., 2015).  

When thousands of trials are required, the experiment may need to be spread across 

mulJple tesJng sessions. Long-duraJon experiments have several piralls that, if ignored, 

can compromise an EAM analysis. For example, parJcipants tend to become less engaged 

(e.g., due to faJgue or boredom) the longer a task goes on (Cunningham et al., 2000; 

Krimsky et al., 2017). Disengaged or impaJent parJcipants may ‘saJsfice’ by processing 

sJmuli less deeply or by lowering their response criteria over Jme to get through an 

experiment more quickly (Boehm et al., 2016; Evans et al., 2019; Hawkins et al., 2012). 

Disengagement can introduce speeding trends and other autocorrelaJon effects in the data 

(Gong & Huskey, 2023). AddiJonally, longer experiments that span mulJple days tend to 

have higher rates of parJcipant aVriJon and may exacerbate already high day-to-day 

variability in individuals’ cogniJve and affecJve state (Schurr et al., 2024; Stevenson, Innes, 

et al., 2024). Such effects are problemaJc because standard EAMs assume data are free of 

such non-staJonariJes. These issues can be miJgated by giving parJcipants frequent breaks, 
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and by using appropriate counterbalancing and trial-randomizaJon schemes to 

experimentally control for Jme-on-task effects such as learning and faJgue. 

Finally, we note that collecJng a large number of trials is not always feasible. This is true 

for fMRI research (in which scanner Jme is costly and scarce; Basten et al., 2010; Forstmann 

et al., 2008), when studying certain clinical populaJons (Matzke, Hughes, et al., 2017), or 

when reanalysing exisJng data. If the use of sparse data is unavoidable, there are several 

techniques that can improve EAM esJmaJon properJes. These include using hierarchical 

models (e.g., Stevenson et al., 2024), using more informaJve priors (i.e., for Bayesian 

analyses, Lee & Vanpaemel, 2018; Matzke et al., 2020; Tran et al., 2021), construcJng 

simpler models (e.g., by not esJmaJng across-trial variability parameters, Boehm et al., 

2018; Lerche & Voss, 2016; Ratcliff & Childers, 2015), holding some parameters constant 

over condiJons (Donkin, Brown, & Heathcote, 2011), and by using alternaJve (simpler) 

model formulaJons that require only informaJon about error proporJons rather than error 

RT (e.g., Ludwig et al., 2009). We recommend checking the results obtained from simpler 

models against those obtained from a model in which the constraints are not applied 

(Vandekerckhove & Tuerlinckx, 2007). If both approaches arrive at the same conclusions, this 

provides evidence it is safe to interpret the simpler model. If not, one may need to adjust 

the experimental design and sampling plan unJl reliable model esJmaJon is achieved.  

Par8cipant numbers. A further consideraJon concerning data suitability is how many 

parJcipants to include in the sample. The number of parJcipants determines how well 

findings generalize to the wider populaJon and contributes to power and measurement 

precision in certain analyses (e.g., individual-differences correlaJons; BuVon et al., 2013; 

Rouder & Haaf, 2019). Studies invesJgaJng individual differences (e.g., examining 

correlaJons between EAM parameters and individual-level covariates) typically need many 

parJcipants (e.g., 80 or more), each performing at least a moderate number of trials (e.g., 

around 200), to obtain sufficiently low measurement noise to reliably characterise 

potenJally subtle individual differences (Rouder et al., 2023; Rouder & Haaf, 2018). 

Between-subjects and mixed designs also typically require many parJcipants for sufficiently 

powered between-group contrasts (e.g., Boag, Strickland, Lok, et al., 2019; Steyvers et al., 

2019) and to precisely characterise the distribuJon of populaJon-level parameters in 

hierarchical Bayesian analyses (Lee, 2011).  
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By contrast, studies seeking to reliably measure within-subjects effects without assessing 

individual differences (e.g., comparing parameters for the same individual between different 

condiJons) typically use fewer parJcipants (e.g., as few as 3; Ratcliff & Rouder, 1998) who 

each perform a large number (typically thousands) of trials to ensure high individual 

measurement precision (Smith & LiVle, 2018). An advantage of fully within-subjects designs 

is that the unit of replicaJon is the individual parJcipant rather than the whole study, 

meaning that each parJcipant serves as an independent replicaJon (validaJon) of the target 

effects (Smith & LiVle, 2018). ReplicaJon increases confidence that obtained effects are real 

and meaningful.  

As with trial number planning, we recommend conducJng parameter recovery 

simulaJons (based on different numbers of syntheJc parJcipants) to understand how many 

parJcipants are needed to obtain a desired level of power or measurement precision for a 

proposed analysis (White et al., 2018).  

 

Procedural considera1ons 

In this secJon, we discuss procedural consideraJons that can help bring parJcipants (and 

the data they produce) in line with EAM assumpJons. We consider task instrucJons, task 

training, and the tesJng environment.  

Task instruc8ons. Task instrucJons should be designed to maximize parJcipant 

compliance with the task and to minimize undesirable behaviours that may produce data 

unsuitable for EAMs. Undesirable behaviours may include fast guessing, mind-wandering 

and inaVenJon, waiJng/delayed start-ups, random responding, and nonresponding (e.g., 

Cassey et al., 2014; Hawkins et al., 2019; Ratcliff & Kang, 2021). The foremost goal of 

instrucJons is to ensure that parJcipants understand how to perform the task as intended 

by the researcher. This may involve explaining how a typical trial is structured and showing 

examples of different possible decision outcomes. InstrucJons should also explain key 

features of the task display, experiment presentaJon sokware, and response apparatus.  

It is good pracJce to confirm that parJcipants understand the task instrucJons and to 

provide reminders of key instrucJons before each tesJng block and following breaks or 

interrupJons. ParJcipant compliance/understanding can be assessed through verbal 

confirmaJon or by having parJcipants demonstrate that they meet some performance 
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criterion. As a generic strategy, we recommend instrucJng parJcipants to respond to each 

trial as quickly and accurately as possible. This instrucJon is designed to ensure that 

decisions stem from a pure (uninterrupted) evidence accumulaJon process, as assumed in 

the models. If using a manual response modality such as a computer keyboard, we suggest 

instrucJng parJcipants to keep their fingers posiJoned directly above the response keys. 

This serves to reduce across-trial variability in nondecision Jme (potenJally jusJfying its 

removal from the model) and ensures motor RT is as similar as possible for all parJcipants 

(potenJally jusJfying esJmaJng a common nondecision Jme across parJcipants). We 

recommend inviJng parJcipants to clarify any outstanding quesJons before commencing 

the experiment. Doing so may reduce the amount of data lost due to misunderstanding or 

noncompliance.  

Task training. It is good pracJce to have parJcipants perform pracJce/training trials 

before starJng the experiment. PracJce serves the two-fold purpose of helping parJcipants 

understand the task and of stabilising performance prior to the experimental trials. Reaching 

a stable level of performance is important for preserving within-condiJon staJonarity (i.e., 

that latent decision seongs do not change within a condiJon). IdenJfying the point of stable 

performance is difficult since learning and adaptaJon may conJnue indefinitely for some 

tasks. Nevertheless, common pracJces include having parJcipants pracJce unJl reaching 

some performance criterion (e.g., > 80% accuracy). Providing performance feedback 

following training trials (e.g., indicaJng whether the response was correct or incorrect) can 

help to speed up the learning/performance stabilisaJon process. Non-staJonariJes and 

carry-over effects (e.g., across trials and condiJons) can be further minimized using 

appropriate randomizaJon (e.g., randomizing the presentaJon of trials within a condiJon) 

and counterbalancing regimes (e.g., balancing the order of condiJons within an experiment; 

Brooks, 2012; Lewis, 1989; Zeelenberg & Pecher, 2015).  

The tes8ng environment. The tesJng environment should encourage parJcipants to 

perform the experimental task in the manner intended by the researcher. For most 

purposes, this means that parJcipants are seated at a desk with a computer and a keyboard 

or other response apparatus, and a display monitor posiJoned at a comfortable viewing 

distance. In applicaJon studies, which use various high-fidelity simulated and virtual-reality 

environments (e.g., Castro et al., 2022; Ratcliff & Strayer, 2014; Tillman et al., 2017; Vanunu 

& Ratcliff, 2023), parJcipants should be posiJoned appropriately for the simulator 
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environment. To facilitate engaged and aVenJve task performance, tesJng should be 

conducted in a quiet, comfortable space, free from distracJons and interrupJons. This is 

important for the EAM assumpJons of model plausibility (i.e., that responses are generated 

by a single conJnuous evidence accumulaJon process) and of staJonarity (i.e., that latent 

cogniJve seongs are stable over Jme).  

Ideally, all parJcipants would be tested in a single in-person session under idenJcal 

condiJons. However, if tesJng must be conducted across mulJple sessions or in different 

locaJons, then condiJons should be kept as consistent as possible between each session 

and tesJng locaJon. Consistency of context is important because individuals are known to 

use different decision-making strategies in different contexts, such as when performing a 

task inside versus outside of an fMRI scanner (Forstmann et al., 2008; Van Maanen et al., 

2016). Inside the scanner, parJcipants adopted more conservaJve (higher) response 

thresholds and had longer nondecision Jmes than they did in the out-of-scanner tesJng 

context (Van Maanen et al., 2016; see also, Forstmann et al., 2008; Gunawan et al., 2020). 

Ignoring or aggregaJng over such context effects may introduce undesirable data features 

(e.g., bimodal RT distribuJons) that may cause failures to fit and produce misleading or 

meaningless parameter esJmates.  

Online tesJng plarorms (e.g., Mechanical Turk, Prolific, CloudResearch) give researchers 

the potenJal to collect data more quickly and affordably than is possible offline (Barbosa et 

al., 2023; Birnbaum, 2004). However, there are concerns that unsupervised online 

parJcipants may generate poor quality data (e.g., data that are noisy, non-staJonary, or 

generated by contaminant processes; Douglas et al., 2023; Peer et al., 2021). These concerns 

arise because, lacking supervision, online parJcipants may misunderstand task instrucJons 

or be inaVenJve/careless (Albert & Smilek, 2023; Aruguete et al., 2019) and the remote 

online context makes it difficult for experimenters to idenJfy and correct such problems 

(Reips, 2002). Ratcliff and Hendrickson (2021) conducted an online replicaJon of several 

classic EAM studies and found that almost half of the parJcipants in one experiment made a 

significant number of fast guesses (i.e., premature responses with chance accuracy) and/or 

produced RTs that were unstable (non-staJonary) across the tesJng session. Nevertheless, 

inferences based on diffusion model parameters were largely consistent with the prior in-

person studies (Ratcliff & Hendrickson, 2021). We recommend approaching online tesJng 

with appropriate cauJon and to avoid collecJng mixed samples of online and in-person 
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parJcipants. We refer readers to Gong and Huskey (2023) for more detailed advice about 

construcJng an online tesJng pipeline for EAM analyses.  

If context effects are suspected, we recommend accounJng for these effects in the EAM 

analyses. This can be done in most EAM sokware by including a ‘session’ or ‘tesJng context’ 

factor allowing parameters to vary by context, by fiong the model to data from each context 

separately, or by building the addiJonal contextual structure into a hierarchical model (e.g., 

Schurr et al., 2024; Stevenson, Innes, et al., 2024; Wall et al., 2021). Finding a close 

agreement across contexts may jusJfy pooling data.  

 

Collec1ng and recording data 

EAM analysis requires certain informaJon about each trial to be recorded. Such 

informaJon is typically recorded by the sokware used to present the experiment and is 

saved in the form of a data table or comma-separated values file, in which each row 

represents a trial and each column an experimental or measured variable. At minimum, each 

row of the data should record the parJcipant idenJfier, experimental condiJon, the 

presented sJmulus, the submiVed response and RT.  

Data should include the tesJng session (if more than one) and trial number, and it is 

good pracJce to record the Jming of events, including sJmulus and response onsets, and 

events such as cues, feedback/reward screens, and intertrial intervals. While not everything 

will be used in modelling, the raw data should ideally allow one to reconstruct the trial 

composiJon and Jming of the original experiment. Most EAM sokware will require as input 

a data frame of this approximate form (e.g., Heathcote et al., 2019; Stevenson et al., 2024). 

However, specific data and file formaong requirements will differ depending on the 

sokware/fiong rouJne used.  

 

Screening data prior to EAM analysis 

Prior to EAM analysis, it is important to screen data for potenJally undesirable features 

or distribuJonal properJes that may violate EAM assumpJons. Undesirable data features 

can include outliers (excessively fast or slow RTs), nonresponses, truncated or misshapen RT 

distribuJons, and data from parJcipants who did not comply with task instrucJons. These 
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contaminant processes can compromise the validity of an EAM analysis. Specifically, failure 

to ensure data fidelity can introduce bias and uncertainty into parameter esJmates (Ratcliff, 

1993; Ratcliff & Tuerlinckx, 2002; Vandekerckhove & Tuerlinckx, 2007).  

Outliers. Outliers are contaminant RTs that are generated by processes other than those 

that the researcher is interested in, and which oken lie outside the range of normal 

observaJons (Berger & Kiefer, 2021; Miller, 2023). Outliers can be the result of fast guesses 

(e.g., guesses made without properly inspecJng the sJmulus), slow guesses (e.g., guesses 

based on a failure to reach a decision), delayed or failed start-ups (e.g., due to aVenJonal 

lapses or ‘trigger failures’, Matzke et al., 2017; Vandekerckhove et al., 2008), or from the 

parJcipant execuJng mulJple runs of the process of interest (e.g., making mulJple 

assessments before commiong to a final response; Ratcliff, 1993; Vandekerckhove & 

Tuerlinckx, 2007).  

The simplest and most common method for removing outliers is to define a range of 

acceptable RTs and to remove any observaJons outside of this range. For fast outliers, it is 

common pracJce to remove RTs faster than about 150—300 ms (e.g., McVay & Kane, 2012; 

Rae et al., 2014; White et al., 2010). This pracJce is moJvated by the argument that, since 

nondecision Jme (for manual key presses) is typically on the order of 150—250 ms (Bompas 

et al., 2023), responses executed sooner than this are psychologically implausible because 

they allow too liVle Jme for the accumulaJon of evidence. A more principled method for 

removing fast guesses is moJvated by the fact that fast guesses tend to have very short RTs 

and chance-level accuracy (Ratcliff & Kang, 2021; Ratcliff & Tuerlinckx, 2002; 

Vandekerckhove & Tuerlinckx, 2007). Consequently, one can sort RTs from fastest to slowest, 

find the RT at which accuracy rises above chance, and discard all RTs below the chance-

performance point (Vandekerckhove & Tuerlinckx, 2007). The laVer method is preferrable, 

although differences between approaches will likely be small unless there is a significant 

proporJon (e.g., > 5%) of fast contaminants distorJng the leading edges of the RT 

distribuJons (Ratcliff, 1993, 2013; Ratcliff & Tuerlinckx, 2002).  

For slow outliers, it is more common to define an upper cut-off based on some measure 

of observed RT variability or to simply not censor slow outliers unless there is clear evidence 

of their presence. For example, some researchers censor RTs beyond 3 Jmes the 

interquarJle range/1.349 above the mean (a measure of standard deviaJon that is robust to 

skew; e.g., Strickland et al., 2018). Since RT variability differs between individuals, the 
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process of defining and removing slow outliers should be conducted separately for each 

parJcipant (Miller, 2023). We cauJon that slow contaminants can be more difficult to detect 

than fast guesses, or even impossible, as although they are generated by a contaminant 

process, they may be hidden within the range of normal RTs (Ratcliff, 1993; Ulrich & Miller, 

1994; see also, Berger & Kiefer, 2021).  

Nonresponses. Nonresponses occur when a parJcipant fails to submit a response (e.g., 

due to missing the response deadline). Since nonresponses result in missing values for 

choice and RT, standard EAM likelihood funcJons cannot be evaluated for nonresponses. 

Nonresponses are thus uninformaJve in fiong standard EAMs and should be excluded prior 

to fiong the model. Some kinds of nonresponses, such as ‘trigger failures’ (i.e., failures to 

run the evidence accumulaJon process, Matzke et al., 2017) can be incorporated into 

standard EAMs via mixture modelling (Heathcote et al., 2019) or with the aid of specialized 

experimental designs (Verbruggen et al., 2019).  

Misshapen or non-sta8onary RT distribu8ons. The geometry of standard EAMs predicts 

posiJvely skewed, staJonary RT distribuJons free of truncaJon (i.e., without censorship of 

the leading or trailing edge of an RT distribuJon). EAMs struggle to capture the shape of 

truncated distribuJons, since the truncaJon process is not accounted for in the model. 

Similarly, EAMs cannot predict normally distributed or negaJvely skewed RT distribuJons 

(Evans, Hawkins, et al., 2020), or non-staJonary distribuJons that change in shape or scale 

over Jme (MileJć et al., 2021; Walsh et al., 2017). We recommend checking that RT 

distribuJons are posiJvely skewed, staJonary, and free of truncaJon. Non-staJonarity can 

be checked by tesJng the correlaJon between RT and trial number or by dividing the RTs 

into sequenJal bins and tesJng for changes in mean RT/variance/skewness. Significant 

correlaJons or between-bin differences suggest non-staJonarity.  

Noncompliant par8cipants. In addiJon to excluding individual contaminant trials, it is 

prudent to exclude data from parJcipants who failed to comply with task instrucJons. The 

reason is that noncompliant parJcipants are unlikely to have used the same cogniJve 

strategies as compliant parJcipants who performed the task as instructed. Consequently, 

standard EAMs may be a poor model of the unknown processes underlying noncompliant 

parJcipants’ data. One indicator of noncompliance is chance-level performance. It is 

common pracJce to exclude data from parJcipants with near-chance performance over all 

or part of the experiment (e.g., Stevenson, Innes, et al., 2024).  
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Manipula8on check. It is important to check that experimental manipulaJons produced 

the expected effects on accuracy and mean RT because it may be not worth modelling data 

that lack convincing behavioural effects (Palminteri et al., 2017; Wilson & Collins, 2019). 

ManipulaJon checks can be conducted by tesJng for differences in accuracy or mean RT 

using tradiJonal or Bayesian linear models (e.g., mixed-effects regression models, Rouder et 

al., 2017). Bayesian approaches further allow for quanJfying evidence for null effects using 

Bayes Factors (Dienes, 2016; Lakens et al., 2020; Morey & Rouder, 2011). A lack of 

convincing behavioural effects could indicate that the experimental manipulaJons were 

weak or ineffecJve. Nevertheless, it is possible to find theoreJcally interesJng latent effects 

that are masked in accuracy or RT (Lerche & Voss, 2020). We recommend pilot tesJng 

proposed tasks on a small sample of parJcipants to ensure novel designs/manipulaJons are 

effecJve.  

When it comes to data exclusions, it is our view that prevenJon is beVer than a cure. 

Good data is a hard-won resource, and researchers should seek to minimize the amount of it 

lost to exclusions. We encourage researchers to take measures to minimize contaminants 

such as fast guesses and nonresponses and to ensure parJcipants comply with task 

instrucJons (e.g., by providing sufficient task training and penalizing undesirable 

behaviours). Encouraging compliance will help maximize the data quality and minimize the 

data lost to exclusions. All data exclusions and exclusion criteria should be reported 

transparently. Further, it is good pracJce to check whether results are robust to exclusions 

(e.g., by conducJng the same analysis with and without the exclusions applied).  

 

FiRng EAMs to data 

Once saJsfied the data are appropriate for EAM modelling, the process of model fiong 

can begin. There are numerous freely available sokware packages that enable fiong EAMs 

to data (e.g., Heathcote et al., 2019; Innes et al., 2022; Stevenson et al., 2024; 

Vandekerckhove & Tuerlinckx, 2008; Voss et al., 2015; Voss & Voss, 2007; Wagenmakers et 

al., 2007, 2008; Wiecki et al., 2013). Some fiong sokware takes a Bayesian approach and 

some use frequenJst methods. Sokware differs on which models are supported and in how 

readily the sokware can be modified or extended (e.g., to support novel models). It is 

beyond the scope of this arJcle to weigh the merits of various sokware packages and fiong 



GUIDE TO EVIDENCE ACCUMULATION MODELLING 

 39 

methods. We direct interested readers to several detailed comparaJve studies (e.g., 

Alexandrowicz & Gula, 2020; Evans, 2019; Lerche et al., 2017; Ratcliff & Childers, 2015; van 

Ravenzwaaij & Oberauer, 2009) and to exisJng comprehensive resources on evaluaJng and 

troubleshooJng the model fiong process (e.g., assessing convergence and diagnosing 

problems with sampling/fiong algorithms; Baribault & Collins, 2023; Gelman et al., 1995; 

Kruschke, 2014; McElreath, 2016).  

We recommend fiong EAMs to the data of individuals rather than to group-aggregated 

data (e.g., data that has been collapsed or averaged across parJcipants). This is because 

nonlinear models (such as EAMs) can produce misleading inferences when fit to aggregated 

data (Heathcote et al., 2015; see also, Averell & Heathcote, 2011; Brown & Heathcote, 2003; 

Heathcote et al., 2000). In some cases, one may want to fit just a single model, such as when 

the researcher has in mind a specific EAM, and clear expectaJons for how model parameters 

should change. In this case, the researcher moves on to assessing absolute fit (i.e., how well 

the chosen model accounts for important data features) and then on to interpreJng 

parameters. An alternaJve (and more common) situaJon is to have several plausible models 

of the data, with the goal of finding the one that gives the best (e.g., most parsimonious) 

account of the data. Finding a good model involves assessing relaJve fit (i.e., how well a 

model accounts for data relaJve to other models) and absolute fit and evaluaJng the 

reliability of parameter effects. These are the topics of the next secJon.  

 

Comparing and evalua1ng EAMs 

A thorough modelling analysis involves evaluaJng both relaJve fit (a model’s ability to 

account for data relaJve to other models) and absolute fit (a model’s absolute ability to 

capture the data). Model comparison enables researchers to evaluate compeJng cogniJve 

theories against one another (PiV et al., 2002), the goal being to find the simplest model 

that also fits the data well (Myung & PiV, 1997). Model comparison is important because 

more flexible models will have an unfair advantage in fiong data more closely than a simpler 

model but will also tend to predict future data less well than a simpler model that only 

captures robust/reliable effects (Busemeyer & Wang, 2000; Cuong et al., 1992; Myung, 

2000; Myung & PiV, 1997; Roberts & Pashler, 2000; Yarkoni & Wesrall, 2017).  
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Model comparison requires the researcher to propose a set of candidate models, each of 

which consJtutes a different theory of decision making, as instanJated in an EAM. For 

example, a researcher might be interested in whether parJcipants’ slower RTs in one 

condiJon are due to slower accumulaJon, higher thresholds, or longer nondecision Jme (or 

some combinaJon thereof). The researcher would then build models that explain the effect 

(i.e., slower RTs) using (the appropriate combinaJon of) accumulaJon rates, thresholds, or 

nondecision Jme, while holding the other parameters fixed. The proposed models may vary 

in complexity (e.g., the number of free parameters and how model parameters are 

combined in the model equaJons, Myung & PiV, 1997) and in which parameters are used to 

explain the target effects (e.g., whether a manipulaJon is assumed to affect accumulaJon 

rates or thresholds or both). Moreover, researchers may seek converging evidence by fiong 

the same theory instanJated in different EAM architectures (e.g., using relaJve evidence 

and racing accumulator models). Doing so helps to ensure results are not dependent on the 

specific choice of EAM (Singmann et al., 2018).  

Rela8ve fit. RelaJve fit can be assessed using model comparison metrics (e.g., Akaike, 

1974; Ando, 2007; Schwarz, 1978; Spiegelhalter et al., 2002; Watanabe & Opper, 2010) that 

account for both model fit and model complexity (for a review, Evans, 2019). These metrics 

can idenJfy the model that, out of the models considered, provides the most parsimonious 

account of the data (i.e., offers the best trade-off between fit and complexity). 

Methodological work indicates that even the relaJvely simple ‘parameter counJng’ metrics 

(e.g., AIC, Akaike, 1974; BIC, Schwarz, 1978; DIC, Spiegelhalter et al., 2002) give similar 

results to gold-standard methods such as Bayes Factors (Evans, 2019), which can be difficult 

to implement for complex cogniJve models (Annis et al., 2019; Evans & Brown, 2018; 

Gronau, Heathcote, et al., 2020), but are argued to give the opJmal trade-off between 

flexibility and goodness-of-fit (Jeffreys, 1998; Kass & Rakery, 1995).  

When mulJple models are under consideraJon, we recommend the ‘bookending’ 

strategy (Lee et al., 2019) in which the set of candidate models includes a minimally 

parameterized base model (where all target effects are removed/held fixed) and a fully 

flexible top model (where all target effects are included). This strategy helps establish upper 

and lower bounds on model complexity and to the find the model (from the set of candidate 

models) that provides the most parsimonious account of the data (Heathcote, Brown, et al., 

2015; Lee et al., 2019; Shiffrin et al., 2008). Bookending helps to navigate the treacherous 
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waters between underfiong (i.e., failing to capture important data features) and overfiong 

(i.e., capturing noise or idiosyncraJc data features).  

When parJcipants have different preferred models, it can indicate the use of disJnct 

cogniJve strategies. For example, in a speed—accuracy trade-off experiment, some 

parJcipants may be beVer fit by a model in which urgency selecJvely influences thresholds, 

whereas others may prefer a model in which urgency affects both rates and thresholds. In 

such cases, we recommend reporJng the proporJon of parJcipants best represented by 

each model.4 We further encourage researchers to seek converging evidence (e.g., by 

comparing mulJple complexity metrics) when choosing from among many possible models.  

Absolute fit. One limitaJon of relaJve fit metrics is that there is no guarantee that a 

model selected in this manner actually provides a good account of the data (Box, 1976). The 

winner may be the best of a bad bunch. This limitaJon makes relaJve fit metrics 

inappropriate for falsifying models, since they only consider the relaJve evidence for the 

winning model against (an incomplete set of) rival models, while ignoring whether the 

winner gives an adequate account of the data (Palminteri et al., 2017). The ability to falsify 

models is important for scienJfic progress, since it allows researchers to discard bad theories 

(models) and to propose beVer ones that become the target of future falsificaJon aVempts 

(Popper, 2005). FalsificaJon requires assessing the absolute fit of a model, that is, its ability 

to account for all the important trends in the data. A further reason assessing absolute fit is 

criJcal is that parameters derived from models that fail to capture important data features 

may be misleading or uninterpretable (Anscombe, 1973; Heathcote, Brown, et al., 2015).  

Absolute fit is commonly assessed via visual inspecJon (DuJlh et al., 2019). In this 

method, model predicJons are overlaid against empirical data (Heathcote, Brown, et al., 

2015). We recommend assessing model fit to both accuracy (response proporJon) and RT in 

each cell of the design. Fit to RT should be assessed across the enJre range of RTs (e.g., by 

ploong fits to the 0.1, 0.5, and 0.9 RT quanJles, which correspond to the leading edge, 

median, and tail, of an RT distribuJon, respecJvely). Some researchers also check whether 

models capture higher moments (e.g., variance and skewness) of RT distribuJons (e.g., 

 
4 For hierarchical analyses, which assume a common model across par.cipants, one may instead inves.gate 
individual differences in the pa[ern (e.g., size and direc.on) of parameter effects.  
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Evans, Hawkins, et al., 2020). ConducJng a thorough evaluaJon of absolute fit can help 

diagnose potenJal sources of mis-fit and idenJfy where a model might be mis-specified.  

We recommend visually inspecJng model fits for each parJcipant individually. Poor 

individual-level fits can reveal noncompliant parJcipants (e.g., using alternate or 

contaminant strategies), since the EAM failed to adequately describe the processes at play. 

We suggest running modelling analyses with and without poorly fit parJcipants and 

comparing the results of the two analyses. Points of disagreement may reveal findings that 

are driven by processes other than those the researcher is interested in. We cauJon that 

graphical assessment of fit is inherently subjecJve and thus subject to human error and 

judgement biases (Browne & Cudeck, 1992; Korteling & Toet, 2022; Kunda, 1990). 

Confidence can be increased by using mulJple independent assessors (D’AgosJno, 1986). 

For reporJng purposes, it usually suffices to show the overall fit averaged over parJcipants 

(although the model was fit individually), since it may be infeasible to display comprehensive 

model fits for potenJally hundreds of individual parJcipants.  

Parameter recovery. Having chosen an adequate model, it is good pracJce to assess 

parameter recovery (Heathcote, Brown, et al., 2015). Parameter recovery refers to the 

pracJce of fiong a model to many syntheJc datasets (simulated from known parameter 

values) and assessing whether the model consistently returns the known data-generaJng 

parameters. Recovery can be assessed graphically by ploong the correlaJon between true 

and recovered values. Parameter recovery studies have uJlity for establishing the reliability 

of model inferences and for idenJfying potenJally unreliable (poorly recovered) 

parameters/effects. Parameter recovery simulaJons are also useful for assessing a design’s 

suitability for modelling (in terms of trial and parJcipant numbers) and for verifying the 

efficacy of experimental manipulaJons (in terms of expected effect size; Heathcote, Brown, 

et al., 2015; MileJć et al., 2017; Wilson & Collins, 2019). To generate the syntheJc data used 

to assess recovery, one can simulate from parameter values that have been previously 

reported for similar tasks (Tran et al., 2021), from values (e.g., posterior means) derived 

from fiong the target model to prior data, or from values derived from the beliefs of subject 

maVer experts (Gronau, Ly, et al., 2020; Kadane & Wolfson, 1998; Stefan et al., 2022). 

Parameter recovery should be assessed across a range of ‘true’ generaJng values, in case 

there are biases in specific generaJng-parameter ranges.  
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Test and interpret parameter effects. Having established a reliably esJmated model that 

is preferred based on relaJve and absolute fit, focus turns to tesJng and interpreJng 

parameter effects (i.e., differences across condiJons or correlaJons) contained within the 

preferred model. Tests can be conducted using tradiJonal staJsJcal approaches (e.g., 

ANOVA, Ratcliff et al., 2004; t-tests, Voss et al., 2004) or by comparing posterior parameter 

distribuJons using Bayesian approaches (e.g., Kruschke, 2010; Meng, 1994). Establishing 

that there are strong parameter effects can help jusJfy complexity in a model (Heathcote, 

Brown, et al., 2015). To aid interpretaJon, it is good pracJce to visualize parameter effects 

(e.g., by ploong parameter means and variances or credible intervals across the levels of the 

relevant manipulaJon).  

InterpreJng parameters involves mapping parameter effects back to cogniJve theory. For 

example, in working memory tasks, accumulaJon rate effects might be interpreted in terms 

of differences in item acJvaJon in memory (e.g., Donkin & Nosofsky, 2012; Ratcliff, 1978; 

Zhou et al., 2021). By contrast, in preferenJal choice tasks, rate effects might be interpreted 

in terms of subjecJve uJlity or preference strength (e.g., Busemeyer et al., 2019; Konovalov 

& Krajbich, 2017). Likewise, in different tasks, threshold effects might be interpreted in terms 

of urgency seongs (e.g., Evans, 2021) or the operaJon of adapJve cogniJve control (e.g., 

Boag et al., 2019; Strickland et al., 2018). Linking parameters to broader cogniJve theory 

helps readers understand and interpret the results of an EAM analysis.  

These evaluaJon pracJces consJtute a minimal set of checks intended to promote 

robust cogniJve modelling (Lee et al., 2019), rather than an exhausJve list of best pracJces. 

A complete tutorial on evaluaJng EAMs is beyond the scope of this arJcle. We point 

interested readers to a number of excellent sources on more advanced model evaluaJon 

techniques (e.g., Evans, 2019; Heathcote et al., 2015; Shiffrin et al., 2008). These techniques 

include model recovery and cross-fiong methods to assess mimicry between models 

(Donkin, Brown, Heathcote, et al., 2011; Evans, 2020; Hawkins, Forstmann, et al., 2015) and 

generalizaJon tests to assess how well model predicJons match new data and experimental 

contexts (Busemeyer & Wang, 2000; Vehtari et al., 2017).  
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Repor1ng an EAM analysis 

We encourage researchers to carefully report all sJmuli, materials, procedures, and 

analysis choices. Table 3 lists essenJal informaJon to include when reporJng an EAM 

analysis. The purpose of including this informaJon is to help readers interpret and assess the 

quality of the analysis, and to facilitate future follow-up studies, such as replicaJons and 

meta-analyses of EAM results (Theisen et al., 2021; Tran et al., 2021). Providing contextual 

informaJon (e.g., jusJfying research goals and design choices) can help readers interpret 

findings and determine their scope of applicability. Thoroughly describing the experimental 

procedure and analysis pipeline can help readers assess the trustworthiness of your results. 

To promote transparency and openness in science (Hales et al., 2019; Nosek et al., 2016), we 

encourage researchers to openly report potenJal flaws of models and methods. To further 

encourage open and reproducible research (Crüwell, Van Doorn, et al., 2019; Gilmore et al., 

2017; Munafò et al., 2017), we recommend researchers share anonymized raw data 

(Martone et al., 2018; Wilkinson et al., 2016) along with modelling and analysis code 

(McDougal et al., 2016; Wilson et al., 2019).  

 
Table 3. EssenJal components to include when reporJng an EAM analysis.  

Analyses component Recommended repor*ng prac*ce 

Research context Provide background/context to the research ques.on and jus.fy all 

design choices. Interpret findings in rela.on to the broader research 

context.  

S.muli and materials Describe key proper.es of the s.muli and how they map to the 

possible response op.ons. Describe any equipment used for tes.ng.  

Task and procedure Describe the task and any training procedures, instruc.ons, or feedback 

given to par.cipants. Report any trial-randomiza.on or 

counterbalancing schemes. Report the .ming (onset and dura.on) of 

all events (e.g., cue, fixa.on cross, s.mulus, trial deadline, feedback, 

and intertrial interval). Report the number of par.cipants, trials, and 

tes.ng blocks, and the trial composi.on of each block.  

Data exclusions Report all exclusions (e.g., outliers, nonresponses, and noncompliant 

par.cipants) and exclusion criteria. 

Response .mes Report RT mean and variance (averaged over par.cipants) for correct 

and incorrect responses in each condi.on.  
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Choices Report accuracy mean and variance (over par.cipants) in each 

condi.on.  

Measurement scale/units Report the measurement scale/units (e.g., seconds vs. milliseconds) of 

behavioural measures and relevant model parameters (e.g., 

nondecision .me).  

Model parameters Report which parameters were included in the model and over which 

condi.ons they varied. Report which parameters were not es.mated 

(e.g., fixed as scaling constants).  

Parameter coding Report whether the model was cell coded (e.g., when different 

parameters are es.mated for each design cell) or whether an 

alterna.ve parameterisa.on was used. 

Parameter es.mates Report descrip.ve sta.s.cs (e.g., means and standard devia.ons over 

par.cipants) for all model parameters.  

Model fiVng method Report the fiVng method (e.g., the op.miza.on or posterior sampling 

method and criteria used to assess convergence) and socware used.   

Model fit Show whether the model captures the target data (e.g., by ploVng 

model predic.ons against observed effects).  

Model comparison Report model comparison metrics (e.g., AIC, DIC, or Bayes Factors) and 

explain their interpreta.on.  

Model evalua.on Report the results of any model evalua.on procedures (e.g., parameter 

recovery, model mimicry, and generalisa.on tests). 

Priors For Bayesian analyses, describe the priors (i.e., distribu.on type and 

parameter seVngs) for individual- or group-level parameters.  

Inferen.al sta.s.cs Describe all sta.s.cal tests and inferen.al procedures.  

 

Going beyond the standard models 

Here we raise the issue of what to do when a proposed task violates the processing 

assumpJons of standard EAMs or when the standard framework fails to provide an 

adequate account of the data. In these situaJons, it is prudent to first search the EAM 

literature to find out whether there already exists an extended EAM that may account for 

your data. The literature is replete with EAM variants that have been adapted to account for 

tasks and phenomena not accounted for in the basic EAM framework. One class of extended 

EAMs account for violaJons of within-condiJon staJonarity due to learning (Fengler et al., 

2022; Fontanesi et al., 2019; Mendonça et al., 2020; MileJć et al., 2021; Pedersen et al., 

2017; Pedersen & Frank, 2020; Sewell et al., 2019). In these models, a learning rule allows 
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parameters to be updated from trial-to-trial in response to feedback (for a review, MileJć et 

al., 2020). Extensions also exist that account for various violaJons of within-trial staJonarity. 

These include models that allow for within-trial changes in evidence strength (Diederich, 

2024; Holmes et al., 2016; Holmes & Trueblood, 2018; Krajbich et al., 2010; Maier et al., 

2020; Sepulveda et al., 2020; Sullivan et al., 2015; Weichart et al., 2022; Yang & Krajbich, 

2023) or thresholds (Busemeyer & Rapoport, 1988; Evans, Hawkins, et al., 2020; Hawkins, 

Forstmann, et al., 2015; Smith & Ratcliff, 2022; Voskuilen et al., 2016; Voss et al., 2019; 

Zhang et al., 2014), and the effects of mulJple, potenJally conflicJng, sources of evidence 

on the accumulaJon process (Lee & Sewell, 2024; LiVle et al., 2018; Ulrich et al., 2015; 

Weichart et al., 2020; White et al., 2011, 2018). Another highly acJve area of model 

development research seeks to refine the standard account of nondecision Jme by JtraJng 

the sensory encoding and motor components (Bompas et al., 2023; Kelly et al., 2021; 

Servant et al., 2021; Weindel, Gajdos, et al., 2021).  

The basic framework has been extended to decisions involving more than one discrete 

response per trial (e.g., best—worst ranking tasks, Hawkins et al., 2014; and double-

response paradigms; Evans, DuJlh, et al., 2020; Taylor et al., 2023; Ulrich & Stapf, 1984), 

decisions with conJnuous response spaces (e.g., colour-matching and conJnuous-scaling 

tasks; Kvam, 2019b, 2019a; Kvam et al., 2023; Kvam & Turner, 2021; Qarehdaghi & Amani 

Rad, 2022; Smith, 2016, 2019; Smith et al., 2020; Zhou et al., 2021), and decisions that 

involve integraJng informaJon along mulJple aVributes or feature dimensions (Busemeyer 

et al., 2019; Busemeyer & Townsend, 1993; Fific et al., 2010; Krajbich & Rangel, 2011; 

Nosofsky et al., 2011; Nosofsky & Palmeri, 1997; Roe et al., 2001; Strickland et al., 2023; 

Trueblood et al., 2014; Tsetsos et al., 2010).  

If no appropriate model exists, focus turns to model development. The goal of model 

development is to construct a new model that accounts for phenomena that exisJng models 

do not (Crüwell, Stefan, et al., 2019). This is oken accomplished by adapJng or extending an 

exisJng model (e.g., Brown & Heathcote, 2005; Evans et al., 2018; Hawkins & Heathcote, 

2021; MileJć et al., 2021; Ratcliff & Rouder, 1998) but can also involve construcJng an 

enJrely new model to explain the target paradigm (e.g., Ratcliff, 1978; Usher & McClelland, 

2001). Model development is an iteraJve and exploratory process (Crüwell, Stefan, et al., 

2019) and one may require specialized knowledge of mathemaJcs and computer 

programming to successfully build and implement a new model. We refer interested readers 
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to several excellent resources on cogniJve model development (Busemeyer & Diederich, 

2010; Farrell & Lewandowsky, 2018; Lee & Wagenmakers, 2014).  

One focus of model development concerns how to incorporate choice confidence raJngs 

into the standard account of decision making (Lee et al., 2023; Lee & Dry, 2006; Moran et al., 

2015; Pleskac & Busemeyer, 2010; Ratcliff & Starns, 2009, 2013; Van Zandt & Maldonado-

Molina, 2004). Confidence raJngs offer a third data source (i.e., choice, RT, and confidence) 

with which to constrain models of decision making (Vickers, 2014). Current models make 

different assumpJons about the how confidence raJng decision trials should be structured. 

For example, Ratcliff and Starns (2009) measure confidence during the iniJal decision, while 

Pleskac and Busemeyer (2010) measure confidence during a subsequent addiJonal decision 

stage (see also, Moran et al., 2015). This difference is criJcal if confidence raJngs are based 

on different evidence before, during, and aker a decision (Lee & Pezzulo, 2022, 2023). Such 

structural differences make it difficult to compare models (both to other confidence models 

and to standard EAMs), especially if eliciJng the confidence raJng changes how individuals 

perform the task. We echo Evans and Wagenmakers (2019) in expressing that “although 

choice confidence is an interesJng addiJonal source of data that can help us beVer 

understand certain aspects of decision-making, inferences made in these paradigms may 

lose direct applicability to the standard two-alternaJve forced choice paradigms used in 

most decision-making tasks” (p. 18).  

 

Concluding remarks 

Our aim in this paper was to provide pracJcal guidance on planning experimental tasks 

for EAMs. To this end, we gave advice on how to design tasks that meet EAM assumpJons, 

on how to relate experimental manipulaJons to EAM parameters, and on how to collect and 

prepare task data for EAM analysis. We discussed techniques for evaluaJng EAMs and 

warned of common piralls that can arise in EAM analyses. Some issues, such as sample size 

planning, depend upon the goals of the researcher and may require careful judgement. This 

arJcle is intended as a resource to aid in planning experiments for reliable EAM analysis. By 

encouraging good task design pracJces, we hope to improve the quality and trustworthiness 

of future EAM studies and to help users obtain valid and interpretable results from EAMs.  
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