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The EZ-diffusion model is a simplification of the popular drift diffusion model of choice response times that allows researchers to calculate
diffusion model parameters directly from data with no need for expensive computations. The EZ-diffusion model is based on a system of
equations in which the diffusion model’s drift rate, boundary separation, and nondecision time parameters are jointly used to predict three
summary statistics (the accuracy rate and the mean and variance of the correct response times). These equations can then be inverted to
obtain estimators for the three parameters from these summary statistics. Here, we describe a probabilistic formulation of the EZ-diffusion
model that can serve as a hyper-efficient proxy model to the drift diffusion model. The new formulation is based on sampling distributions
of summary statistics and consists only of normal and binomial distributions. It can easily be implemented in any probabilistic program-
ming language. We demonstrate the validity of the proxy model through extensive simulation studies and provide multiple examples (via
osf.io/bzkpn), including an implementation in JASP. We conclude that, although the recovery of some parameters with the proxy model is
biased, the recovery of regression parameters is good, making the method useful for cognitive psychometrics (i.e., explanatory cognitive
modeling). Casting the EZ-diffusion model in the broad family of Bayesian generative models allows us to benefit from mature implemen-
tations, practical workflows, and powerful extensions that are not possible without a probabilistic implementation and not feasible with the

regular drift diffusion model. Code and example applications are provided via osf .io/bzkpn.
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Cognitive psychometrics is a relatively new, specialized discipline
in which advances in cognitive modeling are applied in psycholog-
ical measurement (Batchelder, 2016). The advance of cognitive
psychometrics reflects a broader trend towards the use of idealized
models in the philosophy of measurement (Tal, 2020).

The relationship between cognitive science and cognitive psy-
chometrics is by nature symbiotic: As cognitive scientists develop
ever more sophisticated models of cognition and behavior, so are
psychometricians empowered to use those models as measure-
ment tools. The goal of cognitive psychometrics is to construct an
algebra of data, so that complex and nonlinear data patterns can
be expressed as simple composites of interpretable units. An ex-
ample success story of this research program is the drift diffusion
model (DDM) for two-choice response times (RTs). The model
was developed, gradually, by Stone (1960) and Link (1975). It was
then made popular through extensive work by Ratcliff (1978), who
showed that diffusion model parameters behave like their name-
sakes in a wide variety of contexts (Wagenmakers, 2009; see also
Voss, Rothermund, & Voss, 2004; but see Lerche & Voss, 2018,
and Rafiei & Rahnev, 2021, for violations of selective influence).
After that, the model was developed into a measurement tool
(Vandekerckhove, Verheyen, & Tuerlinckx, 2010; Vandekerckhove,
Tuerlinckx, & Lee, 2011), and many interesting applications have
resulted (see, e.g., Ratcliff, Smith, Brown, & McKoon, 2016). Taken
together, this is a cognitive psychometric research program, in-
tended to quantify patterns of data that are indicative of underlying
latent features that vary between individuals and other empirical
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units. When quantified, we may then seek to explain the observed
variability (De Boeck & Wilson, 2004; Vandekerckhove, 2014).

Theoretical progress in cognitive psychometrics is achieved
through the development of cognitive models to describe the latent
processes that generate data. Ideally, the models specify such
processes with parameters that carry psychological meaning and
that can be interpreted in the context of the data collection, while
formalizing only those substantive assumptions about cognition to
which the researcher is willing to commit.

Some of these models, however, are somewhat involved and
require significant modeling expertise to be implemented. The
DDM in particular became popular for its ability to account for data
patterns that are known to be elicited by specific aspects of ex-
perimental task designs, but its implementation is computationally
complex, erecting a barrier to applications. In response to these
limitations, Wagenmakers, van der Maas, and Grasman (2007) de-
veloped an “EZ” version of the DDM that allows the user to estimate
the model’s key parameters from summary statistics of observed
choice RT data (i.e., the mean and variance of the correct RTs
and the accuracy rate). The EZ method (hereafter, EZ-diff) has
since been widely applied in the study of, among others, percep-
tual decision-making (Bitzer, Park, Blankenburg, & Kiebel, 2014;
Mulder, van Maanen, & Forstmann, 2014), of working memory and
intelligence (Schmiedek, Oberauer, Wilhelm, Sif3, & Wittmann,
2007), of self-regulation (Enkavi et al., 2019).

The Bayesian implementation of cognitive process models is
crucial to the cognitive psychometrician, as it facilitates their appli-
cation as measurement models. Cognitive process models that are
typically used to account for the underlying response processes
at the individual level can be extended hierarchically to take into
account between-subjects variability and capture individual differ-
ences (Lee, 2011; Vandekerckhove et al., 2011). Furthermore,
models can be extended into cognitive latent variable models that
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distinguish across different levels of variation, or incorporate meta-
regression structures that capture predictors associated with any
of the parameters (Vandekerckhove, 2014).

To deal with complex models with intractable likelihoods, statis-
ticians will sometimes adopt so-called ‘indirect inference’ ap-
proaches, in which a target likelihood is approximated by an auxil-
iary or proxy model (Jiang & Turnbull, 2004; Price, Drovandi, Lee,
& Nott, 2017). For example, Wood'’s (2010) synthetic likelihood
method models relevant summary statistics using a multivariate
normal distribution.’

In this paper, we propose a similar approach to working with the
DDM. We construct a proxy model from the sampling distributions
of the EZ-diff summary statistics. This simplified model can easily
be implemented in specialized software as a Bayesian generative
model, allowing for the implementation of hierarchical and explana-
tory meta-regression structures. We demonstrate the viability of
this application through multiple examples developed in JASP and
R (via osf.io/bzkpn). First, we will review the DDM and EZ-diff.
Then we will introduce our proxy model, and then illustrate how it
can be made into a proxy for a Bayesian hierarchical DDM.

The drift diffusion model

The drift diffusion model (DDM) is a cognitive process model that
describes binary choice RT data as the result of a stochastic
sampling process. The core assumption is that decision-makers
accumulate information about stimuli presented, starting the mo-
ment they are asked to make a binary judgment and ending once
a decision boundary is met. One implication of the principle of
accumulation of information (Laming, 1968) is that people make
two decisions: when they are ready to respond and what to re-
spond. These aspects are captured by the RT and choice data,
respectively.

The three key parameters of the DDM are illustrated in Figure 1.
The drift rate parameter v (nu) indicates the average amount of
evidence sampled per unit of time; the boundary separation pa-
rameter « (alpha) corresponds to the distance between the two
response boundaries; and the non-decision time parameter 7 (tau)
accounts for the time required to encode and process the infor-
mation presented by the stimuli. The parameters of the DDM
capture relevant aspects of the psychological process that under-
lies decision-making. These aspects can be manipulated through
experimental design: The drift rate is affected by the quality of the
information conveyed by the stimuli and by individual differences
in processing efficiency. The boundary separation captures the
speed-accuracy trade-off imposed by task instructions and serves
as an indicator of individual caution. The nondecision time is an
indicator of the perceptual complexity of the stimulus (encoding
time) and of the response modality (motor response time), and
seems to be affected by stimulus complexity (Nunez, Gosai, Van-
dekerckhove, & Srinivasan, 2019) and participant age (Ratcliff,
Thapar, & McKoon, 2001).

The DDM is frequently implemented as a cognitive process
model to account for the underlying mechanisms that generate
the collected data. In contrast, cognitive psychometricians use
the DDM as a statistically tractable measurement tool that can be
extended to explore latent variable structures, quantify individual
differences, and estimate regression coefficients for covariates of
interest (Rouder, Province, Morey, Gomez, & Heathcote, 2014).

"Indirect inference has recently come to imply the use of simulated data sets to fit models and
estimate parameters, but that is not what we will do here.
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Fig. 1. Evidence accumulation in a two-choice decision task. The jagged line

represents the noisy process of evidence accumulation over time until the observed
reaction time, when the evidence hits the ‘correct’ decision bound. The distributions
are predicted RT distributions for correct decisions (top) and errors (bottom). The drift
rate v captures the participant’s evidence accumulation rate: their ability at the task.
The boundary separation « captures the participant’s speed-accuracy trade-off: their
caution at the task. The nondecision time 7 captures the time spent on processes
other than decision making. Figure credit Vandekerckhove and Chavez De la Pefia
(2023).

In the present paper, we focus on the latter case: the implemen-
tation of the DDM as a measurement model to explain variability
in the model’s parameters with exogenous predictors. The practi-
cal application of a process model as a measurement model will
benefit from the use of a Bayesian hierarchical model (Dutilh et
al., 2017; Rouder & Lu, 2005; Rouder et al., 2014; Rouder & Haaf,
2019; Schubert, Nunez, Hagemann, & Vandekerckhove, 2019;
Vandekerckhove et al., 2011; Villarreal et al., 2024).

Hierarchical cognitive models

Cognitive models are traditionally implemented to describe
individual-level performance (e.g., Lee, Newell, & Vandekerck-
hove, 2014), with group performance being described using aggre-
gate measures that assume low between-subject variability (Estes,
1956). This traditional approach implies a multi-step analysis that
starts by estimating individual parameter values and then using
summary measures for inference regarding average group perfor-
mance and individual differences (e.g., Klauer, Voss, Schmitz, &
Teige-Mocigemba, 2007). While this two-stage approach is com-
mon, it is important to remember that the parameters estimated
in the first stage have uncertainty associated with them (either
posterior variability or standard error of measurement), and for the
purposes of statistical inference this uncertainty needs to be prop-
agated appropriately. Neglecting this uncertainty in the second
stage leads to a risk of so-called generated regressor bias (Pagan,
1984; Boehm, Marsman, Matzke, & Wagenmakers, 2018).
Hierarchical cognitive models are extensions of cognitive mod-
els that model multiple sources of variability simultaneously (e.g.,
measurement error, variability between individuals, stimuli, exper-
imental conditions, etc.; Coleman, 1964; Clark, 1973). In these
models, parameter values across levels of variation are assumed
to be sampled from parent distributions (Lee, 2011), such that
variability in individual performance is taken into account when esti-
mating population-level statistics (Lee & Webb, 2005; Rouder & Lu,
2005). In the context of nonlinear models of cognition, hierarchical
modeling is especially critical because generated regressor bias
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may be asymptotic (i.e., the bias does not go to zero even with
very large samples; Rouder & Lu, 2005).

While it is possible to implement hierarchical cognitive models
under any statistical philosophy, it is often most convenient to make
use of flexible Bayesian modeling strategies (Lee & Wagenmakers,
2013), and this is the default practice.

Going forward, we will use the following notational conventions.
The choice and RT y,; of person p on trial 4 is modeled using a
Wiener distribution with participant-specific drift rate v/, boundary
separation o, and nondecision time 7, (Eq. 1). The hierarchical
model assumes that individual parameters v,, «,, and 7, are
sampled from parent normal distributions with a mean and variance
that describe the population (Egs. 2, 3, and 4).

Ypi ~ Wiener(ap, 7, vp) ]
vp ~ Normal (u, + By, 07) (2]
ap ~ Normal (pia, 02) (3]
7, ~ Normal (uT, 03) [4]

Equation 2 includes by way of example a metaregression struc-
ture on the drift rate. Here, person-specific drift rates are modeled
as samples from normal distributions that are shifted from a shared
population mean by an individual predictor x (indexed with p) mul-
tiplied by a regression coefficient 3. Similar regression structures
can be applied to the boundary separation and nondecision time
parameters,? and nonlinear regressions may be implemented as
well.

The EZ-diffusion model

The “full” DDM accounts for empirical data patterns commonly
observed in binary choice tasks through the implementation of trial-
by-trial variability in the drift rate, starting point, and nondecision
time (Ratcliff, 1978; Ratcliff & Rouder, 1998; Ratcliff & Tuerlinckx,
2002). However, this seven-parameter version of the DDM is signifi-
cantly more complex and requires specific modeling expertise to be
implemented (Vandekerckhove & Tuerlinckx, 2007). Furthermore,
the data patterns specifically captured by the full DDM are elicited
only by certain task designs. In many cases—including many of
those where the DDM is used as a measurement model—using
the full DDM is asking too much of the data (van Ravenzwaaij,
Donkin, & Vandekerckhove, 2017).

In cases where it is reasonable to forgo these assumptions of
between-trial variability in the parameters of the model, as well as
the need for a response bias, parameter estimation is much easier
through the ‘EZ’ implementation of the DDM (EZ-diff) introduced
by Wagenmakers et al. (2007). EZ-diff was developed by first con-
structing a system of equations showing how the DDM parameters
can be used to compute a predicted accuracy rate R”" and mean
MP" and variance V™ of RTs (the ‘forward’ system).® The insight
by Wagenmakers et al. is that the forward system is invertible, so
that parameter estimates can be obtained directly from these three
summary statistics.

Let ¢ = exp (—av). The forward EZ equations are then:

1
qg+1

2Although care should be taken with parameters that are naturally bounded to be positive. Some-
times it is preferable to apply a linear regression to log(a) or log(7) instead.

3inthe original formulation of EZ-diff, a distinction is made between the distribution of ‘correct’ versus
‘incorrect’ RTs. However, under the drift diffusion model with only three parameters, the mean and
variance of the decision time do not depend on the response (Stone, 1960), so we can let go of
this distinction.

R = (3]
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and parameter estimation is made possible through the following
inverse EZ equations:

Ve (7]

Rob
b= lo (1—Rb>
1\ 4/L (R%*L — R®L 4 Ro> — 1
Ves — sgn(R°b— 5) \/ ( w5 2)[8]
L
a® = = 9]
™ = [10]

M o 1 — exp(—v*a®)
2v%s | | 1+ exp(—vesass) |
Here, 1%, a®, and °° are parameter estimates, R® is the ob-

served accuracy rate, M is the observed mean of the RTs, and
V' is their observed variance.

Sometimes EZ-diffusion is the better model

There are use cases in which we believe EZ-diff should be pre-
ferred not because it is easier and faster but because it is the better
model.

EZ-diff gained popularity rapidly as a parameter estimation
tool due to its simplicity and practicality. Despite initial criticism
calling the EZ implementation “too EZ"—for model fit assessments
and for obtaining meaningful parameter interpretations when its
assumptions are not met, the trial size is limited, or there are outlier
RTs (Ratcliff, 2008)—Wagenmakers, van der Maas, Dolan, and
Grasman (2008) showed that EZ-diff can be extended to address
most of these cases. Moreover, as van Ravenzwaaij et al. (2017)
point out, most binary choice tasks do not elicit the data patterns
specifically captured by the full DDM in the first place.

Importantly, van Ravenzwaaij and Oberauer (2009) compared
the performance of the full and EZ-diff in a parameter recovery
simulation study, and demonstrated that EZ-diff can capture indi-
vidual differences in true data-generating parameters, while the full
model failed to recover individual differences in parameters with
across-trial variability. Further, van Ravenzwaaij et al. (2017) used
the full DDM to generate data emulating experimental effects and
then contrasted the ability of EZ-diff to detect those effects against
that of the full model, and were able to conclude that EZ-diff pro-
vides a powerful test of simple empirical effects. This advantage
was seen again in subsequent validation studies (Arnold, Bréder,
& Bayen, 2015) and again in a recent many-modelers study (Dutilh
et al., 2019), in which a variation on EZ-diff was the better model
in terms of its ability to locate group-level effects. A likely reason
for this success is that the mean RT as a summary statistic is less
sensitive to random noise in fast RTs, and this robustness is more
noticeable in scenarios where the number of trials per participant
is low.

Finally, because EZ-diff requires only summary statistics at the
individual level, and indeed only requires those summary statistics
that are conventionally reported in academic papers, the Bayesian
hierarchical extension we will propose next can potentially be ap-
plied in a meta-analytic context.
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A probabilistic proxy model for the drift diffusion model

Equations 8-10 provide deterministic estimators of the three dif-
fusion model parameters. To implement EZ-diff in a probabilistic
programming language, we require a probabilistic estimator — that
is, we need a distribution over data that is conditional on the model
parameters. Such a distribution can be derived from Equations 5-7
and application of sampling statistics (e.g., Rice, 2006).

If N observations are drawn from a diffusion model whose
accuracy rate is R, then the sampling distribution of the observed
number of correct trials 7% is:

T ~ Binomial (R”,N) . [11]

Similarly, if N observations are drawn from a sample whose
mean and variance of the RTs are M® and V"', then the sampling
distribution of the observed mean RT M® is:*

pr
M® ~ Normal (MF", V) . [12]
N

Finally, the sampling distribution of the variance of the RTs

follows this probability law:®

VOb
(N-1) v~ Chi-squared (N — 1)
Ve N-1
= (N-1) v~ Gamma (T’ 2)
o N-—1 2vF
=V Gamma<2 N1/

As N becomes sufficiently large, this is well approximated by a
normal distribution:®

2
V% ~ Normal <Vpr, 2V > .

N1 [13]

Together with Equations 5, 6, and 7, Equations 11, 12, and 13
provide a predictive distribution of three summary statistics in terms
of three DDM parameters — that is, a likelihood. We call this set
of equations our “proxy model” for the DDM. It is easy to see from
Equations 11-13 that the EZ-diff estimators in Equations 8-10 are
the maximum likelihood estimators of the proxy model.

Equipped with a likelihood for EZ-diff, we can now implement
it in a probabilistic programming language like JAGS (Plummer,
2003) or Stan (Carpenter et al., 2017) or PyMC (Abril-Pla et al.,
2023). This will allow us, among other things, to use this proxy
model as a component of a Bayesian hierarchical model.

The EZ Bayesian hierarchical drift diffusion model

A hierarchical Bayesian extension of EZ-diff allows for a practical
and easy implementation of the hierarchical DDM as a measure-
ment model. Equations 1-4 describe the initial hierarchical exten-
sion of the DDM (Vandekerckhove et al., 2011). To implement
our proxy model, it suffices to substitute the likelihood equation
(Eqg. 1) with the three equations that constitute our proxy model
(Egs. 11-13). In practical applications, we will also have to adjust
data preprocessing code so that mean accuracy and the mean and

“*Here the normal distribution is expressed with a mean and variance parameter.

5Here the Gamma distribution is expressed with a shape and scale parameter.

5This approximation is not strictly speaking necessary since we could implement the Gamma distri-
bution directly. However, the Normal distribution affords more flexibility for model-building, and the
Gamma is not as numerically stable.
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Fig. 2. Partial results from the simulation study. Here, we simulated a design in
which participants’ individual drift rates were drawn from a normal distribution whose
mean was a linear function of some external predictor (as in Eq. 2). Depicted is
the recovery of the regression weight 3. We believe that testing a relationship
between drift rate and an explanatory covariate would be the typical use of EZ-diff in
a cognitive-psychometric context. The 25 panels indicate different combinations of
number of participants P and number of trials I" per participant. In each panel, the
‘true’ (generated) 3 value is on the horizontal axis and the mean a posteriori estimate
is on the vertical axis. The dark line in each panel is the median of the estimated
s. The shaded area contains 95% of the estimates (with 2.5% of estimates falling
above and below). Recovery is unbiased and the variability decreases rapidly with
increasing P but only slowly with T". This illustrates the benefit of increasing the
number of participants over the number of trials (note that the panels on the diagonal
from bottom left to top right show scenarios with the exact same total number of
observations, but the variability is clearly lower on the left).

variance of RTs in each design cell are available. An illustrative im-
plementation of the EZ Bayesian hierarchical drift diffusion model
in JAGS is given in Appendix A. The prior distributions in that exam-
ple can be adjusted for specific applications — ours were inspired
by Matzke and Wagenmakers (2009)’s review of the literature.

To test the ability of our proxy model to recover DDM parame-
ters, we conducted a large simulation study. Reproducible code
for the simulation study can be found via osf . io/bzkpn and more
extensive detail is in Appendix B. Briefly, we simulated data sets
from a hierarchical simple (3-parameter) diffusion model in which
P participants provide T’ trials in exactly one condition (a between-
subjects design). Exactly one of the three DDM parameters was se-
lected as the ‘criterion’ and made a linear function of an exogenous
covariate X (Eq. 2 shows the case where drift rate was the crite-
rion). X was either binary (taking only values of 0 or 1; the “t test”
design scenario) or took a value between 0 and 1 (inclusive, the
“linear regression” design), yielding six distinct scenarios. Addition-
ally, we varied the number of participants and trials per participant,
P € {20,40, 80,160,320} and T € {20, 40, 80, 160, 320}, for a
total of 6 x 25 = 150 conditions. In each condition, we simulated
1,000 data sets and used our proxy method (implemented in JAGS
using R2jags; Su & Yajima, 2008) to recover the parameters.

Figure 2 shows partial results from this simulation study, and
complete results and full details of the implementation are in Ap-
pendix B. Across conditions, we observe that our model estimates
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the beta weights well. Recovery is unbiased even in the case with
only 20 participants and improves with increasing P. The effect
of T on recovery is much weaker. Note that the total number of
trials in a simulated experiment (across all participants) is the same
between each panel and its neighbor to the right and up (or left and
down). This way, the figure also illustrates that greater estimation
efficiency is often gained by increasing the sample size P than the
trial count T', a known but underappreciated feature of hierarchical
models (Cohen, Sanborn, & Shiffrin, 2008; DeKay, Rubinchik, Li,
& De Boeck, 2022; Rubinchik, 2019; Vandekerckhove, 2024).

We additionally evaluate the recovery of the population means
of the model parameters. The mean drift rate is generally recov-
ered well with no notable bias. The mean boundary separation is
recovered well, with a slight bias towards the mean of the prior
in the case where we are recovering n. as the intercept of a
regression with P = 20. The mean nondecision time shows the
same pull towards the mean of the prior even with medium values
of P. Moreover, u- is frequently systematically underestimated
even with large P and T". Note, however, that the fact that this bias
is systematic means that the usefulness of the model is preserved
— the effect of a covariate predictor is still estimated well.

In summary, the simulation study illustrates good recovery
properties—especially of the beta weight parameter—but also
shows that our proxy model inherits the estimation biases from
EZ-diff. Consequently, we recommend the use of the EZ Bayesian
hierarchical drift diffusion model specifically in the cognitive-
psychometrical context — that is, scenarios where the interest is
not in specific values of DDM parameters, but rather in regression
coefficients that link DDM parameters to external covariates such
as explanatory predictors or elements of an experimental design
(i.e., differences between conditions).

Example applications and additional illustrations

To further illustrate the usefulness of our proxy model, we provide
a number of worked-out applications. These applications can be
found as appendices.

In Appendix C, we conduct a short simulation study with a within-
subjects t-test design and illustrate an easy-to-use hypothesis
testing procedure with a Bayes factor (Kass & Raftery, 1995). The
Bayes factor has excellent inferential properties even for the case
with only 20 participants with 20 observations.

In Appendix D, we revisit data from Ratcliff and Rouder (1998)
and illustrate a more complex regression case. Despite the com-
plexity, the code is simple enough that it can be implemented in
the Bayesian analysis package JASP (Love et al., 2015).

Finally, in Appendix E, we revisit data from Vandekerckhove,
Panis, and Wagemans (2007) and illustrate a practical hypothesis
testing scenario in an incomplete ANOVA design.

Summary

The drift diffusion model (DDM) is a popular model of choice
response time that comes at a significant computational cost.
Moreover, many of its applications add computational complexity
above and beyond that of calculating the expensive DDM likelihood.
Such costly applications have included Bayesian hierarchical ex-
tensions (Vandekerckhove et al., 2011), latent variable structures
(Vandekerckhove, 2014), applications to large population samples
(Lucio et al., 2017; Salum et al., 2014a, 2014b), use of DDMs as a
component in numerical experiments (Stafford, Pirrone, Croucher,
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& Krystalli, 2020), real-time adaptive design optimization (Bahg et
al., 2020), and model comparisons that involve high-dimensional
numerical integration (Boehm et al., 2023; Gronau, Heathcote, &
Matzke, 2019).

The EZ-diffusion model (EZ-diff; Wagenmakers et al., 2007)
was a significant development in this regard, allowing for rapid
approximations to DDM parameters with relative ease. However,
enhancing EZ-diff with additional statistical structure—such as
constraints on parameters over conditions, or introduction of ex-
planatory covariates—was not yet possible. We have introduced
the EZ Bayesian hierarchical DDM, a new formulation of EZ-diff
as a Bayesian generative model that lends itself to implementation
in generic probabilistic programming languages. The derivation
was based in standard mathematical statistics — the key equa-
tions are Equations 11, 12, and 13. We conducted simulation
studies showing good recovery of DDM parameters using our new
method, including good recovery of hierarchical regression pa-
rameters, and we provide some examples in an online repository
(osf.io/bzkpn).

With this new ‘EZ’ formulation, using the DDM is no more costly
than using a normal distribution, opening the door to a wide array
of modeling applications.

Open practices: Code availability and reproducibility

Our simulation studies can be reproduced using code available
via GitHub, github.com/joachimvandekerckhove/ezbhddm
(Python) and github.com/Adrifelcha/EZ-project (R), and
archived on the Open Science Framework (osf .io/bzkpn). The
python codebase is in the src/ directory and R/ contains R code.
Python and R notebooks to repeat small-scale simulations and
create figures are in the notebooks/ directory. Finally, the vm/
directory contains set-up information for a virtual machine with a
suitable computational environment for reproducibility.

Code and example applications are additionally provided via
osf.io/bzkpn.
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A. lllustrative JAGS code

The following JAGS code implements the EZ Bayesian hierarchical
drift diffusion model, with drift rate as the criterion of a regression
with predictor X. The code consists of a block of priors, a block
for the hierarchical level with the regression component, a block
with the forward EZ equations, and a block with the sampling
distributions for each summary statistic. Note that JAGS uses

precision (inverse variance) as the second parameter of dnorm().

The code is written to expect a data set with five variables, all
vectors of length equal to the number of cells in the study design
(here, there is one cell per participant because the design is fully
between participants):

» nTrials: the total number of trials in this cell

+ correct: the number of correct responses

» meanRT: the mean of the RTs (in seconds)

+ varRT: the variance of the RTs (in seconds squared)

+ X: the predictor

In the remaining appendices, we provide more complex examples.

All of our code, including applications imported into JASP (Love et
al., 2015), can be accessed via osf.io/jstgw.

## Illustrative JAGS code
model{
bound_mean ~ dnorm(2.25,pow(1,-2))T(0.10,)
nondt_mean ~ dnorm(0.55,pow(0.25,-2))T(0.05,)
drift_mean ~ dnorm(0,pow(3,-2))
bound_sdev ~ dunif(0.01,2)
nondt_sdev ~ dunif(0.01,0.5)
drift_sdev ~ dunif(0.01,2)
betaweight ~ dnorm(0,pow(1,-2))

for(p in 1:nParticipants){

# Hierarchical distributions of diffusion

# model parameters, with drift rate criterion.

drift[p] ~ dnorm(drift_mean + betaweight*X[p],
pow(drift_sdev,-2))

bound [p] ~ dnorm(bound_mean,
pow (bound_sdev,-2))T(0.10,)

nondt[p] ~ dnorm(nondt_mean,
pow(nondt_sdev,-2))T(0.05,)

# Forward equations from EZ-diffusion
ey[p] = exp(-bound[p] * driftl[pl)
Pclpl =1/ (1 + eylpl)

PRT[p] = 2 * pow(drift([p]l, 3) / bound[p] *
pow(eylp]l + 1, 2) / (2 * -bound[p] *
drift[p] * eyl[p] - eylpl*eylp]l + 1)

MDT[p] = (bound[p] / (2 * drift[p])) =
(1 - eylpl) /7 (1 + eylpl)

MRT[p] = MDT[p] + nondt[p]

# Sampling distributions

correct[p] ~ dbin(Pc[p], nTrials)

meanRT [p] ~ dnorm(MRT[p], PRT[p] * nTrials)

varRT[p] ~ dnorm(1/PRT[p], 0.5 * (nTrials-1) x*
PRT[p] * PRT[p])
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B. Parameter recovery simulation studies

We present the results of six simulation studies to test the ability of
our proxy model to recover the parameters of the hierarchical DDM.
In all studies, we simulated two-alternative forced-choice data
from P participants P € {20, 40, 80, 160, 320}, each providing T’
trials T € {20, 40, 80, 160, 320}. In all cases reported below, we
simulated a between-subjects design.

Sampling procedure. All simulated participants had a randomly
chosen drift rate v, boundary separation «,,, and nondecision
time 7,. The population-level distributions of all parameters were
normal (see Egs. 2-4). In all simulations, we chose one parameter
0 € {v,a,7} as the ‘criterion’ and made its population mean a
linear function of a single person-level predictor z,:

Op ~ N(po + ,317;;,0’3).

Here, the beta weight /3 is the parameter of greatest interest, as it
describes the prediction of 6 by z,, (i.e., it is an external covariate).

In the six simulation studies we describe below, § was one of
v, a, or 7, and x,, was either binary (the “t test” design scenario)
or took a value between 0 and 1 (inclusive; the “linear regression”
design). Every study consisted of 1,000 iterations in which a data
set was generated from these individual-level sampled parameter
values.

Each iteration of each simulation study began by drawing a
random set of hierarchical mean parameters:

e ~ U(0.50,4.00)
e~ U(=5.50,5.50)
pr ~ U(0.15,0.50)

A set of hierarchical standard deviation parameters o, o, and
o, was then defined to be proportionate to the hierarchical mean
parameters sampled. This manipulation served the purpose of
ensuring lower-value hierarchical means were not matched with
higher-value standard deviations.

The beta weight parameter 3 to be used in any iteration was
also sampled from a uniform distribution. For simulations with « or
v as the criterion, the range was (—1, 1). When 7 was the criterion,
B was sampled from a (0, 1) uniform interval.

We then drew P person-specific diffusion model parameters
from the population-level distributions defined by these hierarchical
parameters. Finally, for each person, we drew T realizations of the
diffusion process using the rejection-based algorithm described
in Tuerlinckx, Maris, Ratcliff, and De Boeck (2001). EZ-diff was
developed from the simple DDM with no initial bias and no between-
trial variability parameters. As such, the data simulated for every
participant did not include any form of between-trial variability.

Parameter recovery. For parameter recovery, we drew samples
from the posterior distribution of each of the hierarchical param-
eters using the JAGS code in Appendix A (with the regression
structure applied to whichever parameter was the criterion in that
simulation). For each simulation study, we drew three MCMC
chains with 2,500 samples after a 500-sample burn-in period.

Speed. The posterior sampling, together with standard postpro-

cessing in R, generally took between four and five seconds per
iteration on an off-the-shelf desktop computer.
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Evaluation. We evaluate the recovery by plotting true values on
the horizontal axis and mean a posteriori estimates on the vertical
axis in Figures 3 (for 3), 4 (for 11.), 5 (for pa), and 6 (for p-). Each
figure contains six panels of 25 (5x5) scatter plots. The panels
in the left column refer to the “t test” designs and those in the
right column to the “linear regression” designs. The three rows
of panels indicate the cases with the drift rate v as criterion (top
row), the boundary separation « as criterion (middle row), and
the nondecision time 7 as criterion (bottom row). Better recovery
is signaled by points falling closer to the gray dashed diagonal.
The shaded areas denote 95% of the estimates obtained across
different regions of the true parameter space (2.5% falling on either
side), with the thick black lines indicating the median estimates.

Note that Figures 4, 5, and 6 show the recovery of parameter-
specific hierarchical means (u., pa, and p-, respectively) and that
the role of these parameters depends on the design. That is, in
Figure 4, the panels on the top row (“t test on v” and “metaregres-
sion on v”) show the recovery of u,, which in these cases is the
intercept of the linear function ., + Bz,. The same is true for
the panels in the middle row in Figure 5 and the bottom row in
Figure 6.

The 25 scatter plots differ in the number of simulated partic-
ipants P and trials per participant 7'. As expected, precision of
recovery improves as P and T increase. The values of P and T’
were chosen so that the total number of observations is equal
between each scatter plot and its neighbor to the top right or
bottom left. This helps illustrate that recovery of the beta weights
improves faster with P than with 7' (Cohen et al., 2008). For
small P and T' we sometimes see a strong effect of the prior (i.e.,
extreme values are pulled towards the middle), and for mean
nondecision time we see occasional large overestimates.

In summary, the simulation studies illustrate good recovery proper-
ties of the mean drift rate parameter and the beta weight parameter,
but also shows that our proxy model inherits the estimation biases
from EZ-diff.

C. A brief simulation exercise on hypothesis testing

We conducted a simulation study with a within-subjects t-test de-
sign and two experimental conditions. Data was generated accord-
ing to the following hierarchical structure:

Upk ~ Normal (p, + Xk, 0.25)
ap ~ Normal (pqa,0q)
T~ Normal (pr,07)
Yoki Wiener (Oéi,Ti,l/i,k) s

so that choice and RT data y, x,; from trial < of participant p in
condition k € {1,2} was simulated from a simple diffusion process
with participant-specific boundary separation «;, and nondecision
time 7, parameters, and participant-by-condition specific drift rates
v; k. We used the indicator variable X : {X; = 0, X, = 1} to
enforce a t-test design on the drift parameter and a beta weight 5
parameter to capture the within-participant differences in perfor-
mance across the two conditions.

We generated 1,000 data sets with 20 participants and 20
trials per condition across three fixed effects conditions: g €
{0.0,0.2,0.4}. Each iteration of the simulation study began by
sampling hierarchical parameters from suited uniform distributions.
From there, participant and participant-by-condition specific param-
eters were generated to simulate the data.
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## JAGS code

modelq{
bound_mean ~
bound_sdev ~
nondt_mean ~
nondt_sdev ~
drift_mean ~
drift_sdev ~
betaweight ~

for hypothesis testing simulation

dnorm(2.25,pow(1,-2))T(0.10,)
dunif (0.01,1)
dnorm(0.55,pow(0.25,-2))T(0.05,)
dunif(0.01,0.5)
dnorm(0,pow(3,-2))

dunif (0.01,1)

dnorm(0,pow(1,-2))

# Participant-level parameters
for(p in 1:nParticipants) {
bound [p] ~ dnorm(bound_mean,
pow (bound_sdev, -2))T(0.10,)
nondt [p] ~ dnorm(nondt_mean,
pow(nondt_sdev, -2))T(0.05,)
# Participant-by-condition parameters
for(j in 1:2){
drift[p,j] ~ dnorm(drift_mean + betaweight
* (j-1), pow(drift_sdev, -2))

}
}
for (k in 1:length(meanRT)) {

ey[k] = exp(-bound[P[k]] *

drift[P[k], (X[k])+1])

Pclk] =1/ (1 + eyl[k])

PRT[k] = 2 * pow(drift[P[k], (X[k]+1)], 3) /
bound [P[k]] * pow(eylk] + 1, 2) / (2 * -
bound[P[k]] * drift[P[k], (X[k]+1)] * ey[k]

- eylkl*ey[k] + 1)

MDT[k] = (bound[P[k]] / (2 * drift[P[k], (X[k
1+1)1)) * (1 - eylk]) / (1 + ey[k])

MRT[k] = MDT[k] + nondt[P[k]]

correct[k] ~ dbin(Pc[k], nTrialsPerCondition)

meanRT [k] ~ dnorm(MRT[k], PRT[k] *
nTrialsPerCondition)

varRT[k] ~ dnorm(1/PRT[k], 0.5%(
nTrialsPerCondition-1) * PRT[k] * PRT[k])

}
}

Estimation. Once the trial-by-trial data had been generated, we
computed the EZ-diff summary statistics for each participant-by-
condition design cell. Estimation was conducted using the JAGS
model below. We tested convergence of the MCMC algorithm
by confirming that the potential scale reduction factor R was less
than 1.05. If the algorithm failed to converge (approx. 0.01% of
iterations), the iteration was discarded.

Speed. When fitting the JAGS model, we drew two MCMC chains
with 1,500 samples after a 500-sample burn-in period. The poste-
rior sampling and standard postprocessing in R took approximately
five seconds per iteration on an off-the-shelf desktop computer.

Hypothesis testing procedure. The goal of this short simulation
study is to demonstrate a simple Bayesian hypothesis testing pro-
cedure. We are interested in testing whether the simulated ex-
perimental condition had an effect on the population mean drift
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Fig. 3. Recovery of the 3 parameter across simulation studies (true values on the horizontal axis). The left three panels show studies with ‘t test’ designs, and the right panels
show ‘linear regression’ designs. Rows correspond to different criterion parameters: drift rate (v, top row), boundary separation («, middle row), and nondecision time (7,
bottom). Shaded areas indicate where 95% of the estimated values fell, and the thick black lines represent median recovered values.
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Fig. 4. Recovery of the population mean drift rate 1, parameter across simulation studies (true values on the horizontal axis). The left three panels show studies with ‘t test’
designs, and the right panels show ‘linear regression’ designs. Rows correspond to different criterion parameters: drift rate (v, top row), boundary separation (¢, middle row),
and nondecision time (7, bottom). Shaded areas indicate where 95% of the estimated values fell, and the thick black lines represent median recovered values.
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Fig. 5. Recovery of the population mean boundary separation 1., parameter across simulation studies (true values on the horizontal axis). The left three panels show studies
with ‘t test’ designs, and the right panels show ‘linear regression’ designs. Rows correspond to different criterion parameters: drift rate (v, top row), boundary separation (c,
middle row), and nondecision time (7, bottom). Shaded areas indicate where 95% of the estimated values fell, and the thick black lines represent median recovered values.
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Fig. 6. Recovery of the population mean nondecision time j. parameter across simulation studies (true values on the horizontal axis). The left three panels show studies with
‘t test’ designs, and the right panels show ‘linear regression’ designs. Rows correspond to different criterion parameters: drift rate (v, top row), boundary separation («, middle
row), and nondecision time (7, bottom). Shaded areas indicate where 95% of the estimated values fell, and the thick black lines represent median recovered values.
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Fig. 7. Main panel: Receiver operating characteristic curves illustrating the trade-off
between true positive rate (vertical axis) and false positive rate (horizontal axis) for
different Bayes factor thresholds (solid line: true 8 = 0.4; dashed line: true 8 = 0.2).
Inset: Distributions of estimated 3 parameters for each condition.

rate. For each iteration in our simulation study, we compute a
Bayes factor (Kass & Raftery, 1995) to evaluate the constraint that
B =~ 0. The Bayes factor favoring the alternative is simply the ratio
between the prior mass near 0 and the posterior mass near zero:

B— Pprior (,8 € (_575))
Pposterior (6 S (_57 E)) ’

for some small € (we used 0.1). We then decide that 3 is nonzero
if B exceeds some threshold that is determined by the strength of
evidence we need. In Figure 7, we show the resulting receiver op-
erating characteristic (ROC) curve. Even with this small data size,
the ROC curve demonstrates excellent sensitivity and selectivity
for S3.

D. Applied example: Metaregression

In this example, we showcase the advantages of implementing
our proxy model with a meta-regression extension that involves a
non-linear function. We re-analyze data from Ratcliff and Rouder
(1998), who conducted a numerosity study in which participants
had to identify the brightness of pixel arrays shown on screen as
“high” or “low.” The pixel arrays varied across 33 configuration
levels that differed in the proportion of white pixels, with the first 16
levels indicating a majority of black pixels. The task incorporated
two instruction conditions that primed participants to prioritize the
speed or the accuracy of their responses. We analyze the data
from a single participant, excluding the stimulus configuration with
an equal number of black and white pixels (for which there is no
correct response).

The model. The model has two components. The main compo-
nent is the proxy model built from the sampling distributions for the
summary statistics computed from the data. The second compo-
nent is a meta-regression structure with which we incorporate an
effect 3 of instruction X; on the boundary separation «,

a; ~ Normal(pa + 8Xi, 0a).

and a nonlinear regression on the drift rate v using instruction X;
and stimulus configuration Z; as predictors:

Sis = P(B1+ B2|Zs| + B3 Xi| Zs|)
Vifd = v+ PoSis + PaXi

Normal(1"%%, o).

Vis ~
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Here, Z, is the difference between the number of black and white
pixels (standarized). We use the absolute value |Z,| since we
expect task difficulty to change as the proportion of white pixels
departs from 50%, regardless of the direction of the difference.

## JAGS code for metaregression application
model {
betaweight ~ dnorm(0.00, 1.00)

betal0 ~ dnorm(0.00, 1.00)
betal ~ dnorm(0.00, 1.00)
beta2 ~ dnorm(0.00, 1.00)
beta3 ~ dnorm(0.00, 1.00)
betad4 ~ dnorm(0.00, 1.00)

bound_mean ~ dnorm(1.50, (0.20°-2))T( 0.10, 3.00)

drift_mean ~ dnorm(0.50, (0.507-2))
nondt_mean ~ dnorm(0.30, (0.067-2))T( 0, )
bound_sdev ~ dunif(0.01, 1.00)

drift_sdev ~
nondt_sdev ~

dunif (0.01, 3.00)
dunif (0.01, 0.50)

# Hierarchical distributions of diffusion model
# parameters, with drift rate criterion.
for (p in 1:length(meanRT)) {
drift_pred[p] = drift_mean + betal * phi(betal
+ beta2*abs(Xs[p]) + beta3*Xi[pl*abs(Xs[pl))
+ betad * Xi[p]
drift[p] ~ dnorm(drift_pred[p], (drift_sdev™-2))
bound_pred[p] = bound_mean + betaweight * Xi[p]
bound[p] ~ dnorm(bound_pred[p], (bound_sdev™-2))T

( 0.10, 3.00)
nondt [p] ~ dnorm(nondt_mean, (nondt_sdev™-2))T(
0.05, )

# Forward equations from EZ DDM

ey[p] = exp(-bound[p] * drift[p])

Pclpl =1/ (1 + eylpD)

PRT[p] = 2 * pow(drift[p]l, 3) / bound[p] * pow(
eylpl + 1, 2) / (2 * -bound[p] * drift[p] *
eylp] - eylp]l * eylp]l + 1)

MDT[p] = (bound[p] / (2*driftlpl)) * (1 - eylpl)

/ (1 + eylpl)
MRT[p] = MDT[p] + nondt[p]

# Sampling distributions for summary statistics

correct[p] ~ dbin(Pc[p]l, nTrials[p])

varRT[p] ~ dnorm(1/PRT[p]l, 0.5*(nTrials([p]-1) *
PRT[p] * PRT[pl)

meanRT [p] ~ dnorm(MRT[p], PRT[p] * nTrials([p])

# Noiseless predictions for figures

ey_pred[p] = exp(-bound_pred[p] * drift_pred[pl)

Pc_pred[p] =1 / (1 + ey_pred[pl)

PRT_pred[p] = 2 * pow(drift_pred[pl, 3) /
bound_pred[p] * pow(ey_pred[pl+1l, 2) / (2 *
-bound_pred[p] * drift_pred[p] * ey_pred[p]
- ey_pred[p] * ey_pred[p] + 1)

MDT_pred[p] = (bound_pred[p] / (2 * drift_predl[p
1)) * (1 - ey_predlpl) / (1 + ey_predlpl)

MRT_pred[p] = MDT_pred[p] + nondt_mean

}
}

Chavez etal.




Results. We use the proposed metaregression structure to explore
the effect of instruction on the drift rate. Figure 8 presents the
posterior distributions for the regression coefficients of interest: the
effect on slope 33 and the main effect 34 of instruction on the drift
rate parameter. Both panels show very low posterior density near
zero, suggesting that the instruction condition had an effect on the
drift rate parameter.

Effect of instruction on the drift rate

Effect on slope Main effect
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Fig. 8. Posterior distributions for the effect on slope (33, left panel) and the main
effect (B4, right panel) of the instruction condition on the drift rate. The red vertical
lines indicate the 'no-effect’ values 83 = 0 and 34 = 0.

Figure 9 shows the posterior mean predicted drift rates 1

1,8

(thick, orange line) and the posterior mean estimated drift rates
v;,s (brown markers) with their respective 95% CI (brown whiskers)
for each stimulus configuration level s and instruction condition 1.
As expected, drift rates decrease in both instruction conditions as
the stimulus configuration approaches the 50/50 condition, where
the task is more difficult. Moreover, as suggested by Figure 8,
drift rates seem to be shifted upwards in the ‘Speed’ instruction

condition, indicating an effect of instruction condition on drift rate.

Predicted and recovered drift rate per condition
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Fig. 9. Predicted z/ffe: and estimated v;  drift rates across conditions. The thick

orange lines show the posterior mean predicted drift rates V?,rid for every stimulus
configuration level across instruction conditions. The brown dots correspond to the
posterior mean drift rates estimated v; , with the brown whiskers indicating their
corresponding 95% CI. The ‘Accuracy’ and ‘Speed’ instruction conditions are shown
on the left and right panels, respectively. The vertical gray bars indicate the 50/50
black-and-white condition omitted from our analysis for lack of a ‘correct’ response.

Finally, to demonstrate the adequacy of our meta-regression
model, in Figure 10 we present the posterior predictive checks ob-
tained with respect to all three EZ summary statistics. In all panels,
the thick line and shaded region indicate the mean posterior predic-
tion and 95% ClI, respectively, with the black dots corresponding to
the summary statistics computed from the data for each stimulus
configuration and instruction condition. Overall, our model provides
an adequate account of the data analyzed.

Speed. This analysis with 7,802 observations after data cleaning
took 8.6 seconds on an off-the-shelf desktop computer.
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Fig. 10. Posterior predictive checks for all EZ summary statistics: the accuracy rate
(top panel), the mean RT in seconds (middle panel), and the RT variance expressed
in a log scale (bottom panel). All panels are split by instruction condition, with the
‘Accuracy’ condition on the left and the ‘Speed’ condition on the right. Thick colored
lines show the mean posterior predictions for each stimulus configuration level and
instruction condition, with the shaded area marking the 95% CI. The black markers
indicate the actual summary statistics computed from the data analyzed.

E. Applied example: Hypothesis testing

This example features an implementation of our proxy model with
a meta-regression extension that uses a multiple linear regression
function for hypothesis testing. We re-analyze the data from nine
participants in a shape perception study (Vandekerckhove et al.,
2007), who were asked to compare pairs of irregular shapes in
a “Same/Different” task. The experimental design included three
factors: (1) whether there was a change between the shapes, and
if so (2) what was the change type (did it affect a convexity or con-
cavity); and (3) the change quality (did it introduce a qualitatively
new vertex or did it quantitatively change an existing one). Due
to the incompletely crossed design, this leads to five experimental
conditions (see Tab. 1).

Table 1. Experimental conditions in Vandekerckhove et al. (2007).

Condition ~ Change (A) Change quality (B) Change type (C)
k=1 Yes (A =1) Qualitative (B = 0) Convexity (C' = 0)
k=2 Yes (A =1) Quantitative (B =1)  Convexity (C = 0)
k=3 Yes (A =1) Qualitative (B = 0) Concavity (C = 1)
k=4 Yes (A =1) Quantitative (B =1) Concavity (C = 1)
k=5 No (A = 0) n/a n/a

The model. We explore the variability in the drift rate parameter
vy across conditions k with the following multiple linear regression
model:

pred
Vi

= p~+ Ar(m Bk +72Ck + v3BiCr) + (1 — Ag) V4

pred
k

v, ~ Normal(v} ™", 0v).

The predicted drift rate ”"®* for each condition & is determined
by its unique configuration of the dummy variables A, B, and C
(see Tab. 1). Table 2 summarizes the drift rates predicted per
condition and the implied interpretation for each model parameter.
We will focus on the regression effects v1, v2, and vs.
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Table 2. Regression coefficients for the predicted drift rates.

K Drift predicted (Vpred, ) Interpretation of parameter added

1 7% 1. is the baseline drift rate

2 +m 71 is the effect of a quantitative change
3 Uy +2 72 is the effect of a change in concavity
4 gy +y1+y2+73 73 is an interaction term

5  py+7a 74 is the effect of not having any change

## JAGS code for the hypothesis testing application
model {

#i#t##### Priors

drift_mu ~ dnorm(0,1) # Baseline

drift_lambda ~ dgamma(2,1)

drift_sigma = pow(drift_lambda, -0.5)

for(i in 1:4){

gamma[i] ~ dnorm(0,1)

}

for(j in 1:5){
drift_pred[j] = drift_mu + X[jl*(gamma[1]*Y[jl+
gamma [2] *Z[j]+gamma [3]1*Y[j1*Z[j1) + (1-X[j1)

*xgamma [4]

####### Sampling model
for (k in 1:length(nTrials)) {
# Person-by-condition parameters for DM
parameters
bound[k] ~ dgamma(2,1)
nondt [k] ~ dexp(1)
drift[k] ~ dnorm(drift_pred[cond[k]],
drift_lambda)

# Forward equations from EZ Diffusion

ey[k] = exp(-bound[k] * drift[k])

Pclk] =1/ (1 + eyl[k])

PRT[k] = 2 * pow(drift[k], 3) / bound[k] * pow(
eylk] + 1, 2) / (2 * -bound[k] * drift[k] =
eyl[k] - eylk] * eyl[k] + 1)

MDT[k] = (bound[k] / (2xdrift[k])) * (1 - ey[kl)
/ (1 + eylk])

MRT[k] = MDT[k] + nondt[k]

# Sampling distributions for summary statistics

correct[k] ~ dbin(Pc[k], nTrials[k])

varRT[k] ~ dnorm(1/PRT[k], 0.5*(nTrials[k]-1) *
PRT[k] * PRT[k])

meanRT[k] ~ dnorm(MRT[k], PRT[k] * nTrials[k])
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Results. We use the multiple linear regression model shown above
to explore the effect of change quality and change type on the
drift rate parameter. The top two panels in Figure 11 show the
posterior distributions for the main effects of change quality v; and
change type 2. These posterior distributions assign a low—but not
nonzero—posterior density around zero (marked with a red dashed
vertical line). To evaluate the strength of evidence these estimates
provide, we can compute Bayes factors against a restricted model
in which the weight is close to 0 (as in Appendix C, we use a
tolerance of 0.1, meaning that we test the notion that the weight is
less than 0.1 in absolute value). For ~1, we obtain a Bayes factor of
0.93, which is close enough to 1 as to be nearly perfectly equivocal.
For ~2, we obtain a Bayes factor of 26, which is strong evidence
for a difference between the concavity and convexity conditions.

The bottom left panel in Figure 11 shows the posterior distri-
bution for the interaction effect of change type and change quality
~3, which has some posterior density around zero despite being
centered around —0.45. This suggests that there is at best weak
evidence for an interaction effect between these two factors. In-
deed, when we compute the Bayes factor against vs € (—0.1,0.1),
we get a value of 0.67, again close to 1.

In the bottom right panel of Figure 11, we show the posterior
distributions of the predicted drift rates across each possible com-
bination of change quality and change type. We see a clear effect
of change type (concavity vs. convexity), but the other effects are
more murky.

Speed. Fitting the JAGS model for this example on the 5,722 ob-
servations after data cleaning took 3.8 seconds in an off-the-shelf
desktop computer.
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Fig. 11. Posterior distributions of the regression coefficients ~1, y2 and ~3, and
posterior distributions of the predicted drift rates across all possible combinations of
change type x change quality. The top left panel shows the posterior distribution of
the main effect of the change quality 1. The top right panel presents the posterior
distribution of the main effect of change type 2. The bottom left panel displays the
posterior distribution of the interaction effect between change type and change quality.
All these distributions mark the zero-value position with a vertical dashed red line.
The bottom right panel presents the posterior distributions for the predicted drift rates
across all change type X change quality combinations.
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