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When people repeatedly perform the same task, their 
performance becomes fast, accurate, and relatively effort-
less. For example, you are able to read this text quickly, 
virtually without errors, and, hopefully, without investing 
too much effort. The difference between your performance 
now and when you first learned to read is staggering; from 
a slow, error-prone, and effortful endeavor, your reading 
has matured into automatized skill.

Traditionally, researchers in the field of skill acquisi-
tion have quantified the effect of practice primarily in 
terms of a reduction in the time to execute a given task 
(i.e., response time or RT; Logan, 1992; Newell & Rosen-
bloom, 1981; Woodworth & Schlosberg, 1954). Almost 
every study has shown that the RT benefits due to practice 
are greatest at the start of training and then slowly dimin-
ish over time.

This ubiquitous result, many researchers have argued, 
is best captured by a power function that relates the mean 
RT to practice via the equation

MRT = a + bN2c,		  (1)

where MRT is the mean RT for correct responses, a quan-
tifies asymptotic performance, b quantifies the difference 
between initial and asymptotic performance, N represents 
the amount of practice, and c is the rate parameter that 
determines the shape of the power law. Empirical support 
for the power function relation between RT and practice 
has been reported across a range of tasks—for instance, 
in cigar rolling and maze solving (Crossman, 1959), fact 
retrieval (Pirolli & Anderson, 1985), and a variety of stan-
dard psychological tasks (Logan, 1992). Support for the 
power function relation has appeared so strong that the 
relation is often referred to as a law (e.g., “the ubiquitous 
law of practice,” Newell & Rosenbloom, 1981, p. 3).

Nevertheless, some researchers have questioned 
whether the speedup with practice is really governed by 
a power function. In particular, Heathcote, Brown, and 
Mewhort (2000) argued that the power law is an artifact 
of averaging practice functions over participants (see 
also R. B. Anderson & Tweney, 1997; Myung, Kim, & 
Pitt, 2000). Heathcote et al. showed that for the data of 
many experiments on skill acquisition, individual learning 
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observed behavior: proportion correct, RT distributions 
for correct responses, and RT distributions for error re-
sponses. In addition, the model provides several nontrivial 
predictions that have been confirmed by experiment, such 
as predictions about the relative speed of correct versus 
incorrect RTs and about the relative speed’s interaction 
with the speed–accuracy trade-off (e.g., Ratcliff & Smith, 
2004; Wagenmakers et al., 2008).

The Diffusion Model Parameters
The version of the diffusion model that we apply in this 

article has seven parameters:
1. Mean drift rate (v). Drift rate quantifies the deter-

ministic component in the information accumulation pro-
cess. This means that when the absolute value of drift rate 
is high, decisions are fast and accurate; thus, v indexes 
task difficulty or participant ability.

2. Across-trial variability in drift rate (h). This param-
eter reflects the fact that drift rate may fluctuate from one 
trial to the next, according to a normal distribution with 
mean v and standard deviation h. The h parameter allows 
the diffusion model to account for data in which error re-
sponses are systematically slower than correct responses 
(Ratcliff, 1978).

3. Boundary separation (a). Boundary separation quan-
tifies response caution and modulates the speed–accuracy 

curves were better described by an exponential function 
that relates mean RT to practice via the equation

MRT = a + b exp(2cN ),		 (2)

where the interpretation of the parameters is the same as 
in Equation 1.

Regardless of the specific shape of the function that 
relates the amount of practice to mean RT, the previous 
discussion illustrates that most empirical studies on the 
practice effect have focused on the decrease in mean RTs 
for correct responses. By doing so, the field has largely 
neglected two other important sources of information—
namely, accuracy (i.e., proportion of correct responses) 
and the distribution of RTs (e.g., spread and skewness). 
Those researchers who have taken response accuracy 
into account have tended to ignore RTs (e.g., Dosher & 
Lu, 2007; but see Nosofsky & Alfonso-Reese, 1999) or 
to present both RT and accuracy as separate output vari-
ables—even though it is well known that RT and accuracy 
are intimately related (see, e.g., Forstmann et al., 2008; 
Schouten & Bekker, 1967).

In this article, we seek a detailed understanding of the 
effect of practice by taking into account simultaneously 
the changes in accuracy and in RT distributions, for both 
correct and error responses. To do so, we follow Ratcliff, 
Thapar, and McKoon (2006) in applying the Ratcliff dif-
fusion model (e.g., Ratcliff, 1978; Ratcliff & McKoon, 
2008; Wagenmakers, 2009) to the field of automatization 
in cognitive tasks. The application of the diffusion model 
allows us to use all of the information in the data and to 
decompose the practice effect into its constituent psycho-
logical processes.

The Ratcliff Diffusion Model

Here we describe the Ratcliff diffusion model as it ap-
plies to the lexical decision task, in which participants 
have to decide quickly whether a letter string is a word, 
such as party, or a nonword, such as drapa (Wagenmak-
ers, Ratcliff, Gomez, & McKoon, 2008).

The core of the model is the Wiener diffusion process, 
which describes how the relative evidence for two re-
sponse alternatives accumulates over time. The meander-
ing light gray line in Figure 1 illustrates the continuous 
and noisy accumulation of evidence for a word response 
over a nonword response when a word is presented. When 
the amount of diagnostic evidence for one of the response 
options reaches a predetermined response threshold (i.e., 
one of the horizontal boundaries in Figure 1), the corre-
sponding response is initiated. The dark gray line shows 
how the noise inherent in the accumulation process can 
sometimes cause the process to end up at the wrong (here, 
nonword) response boundary.

The diffusion model provides a detailed and compre-
hensive account of performance in speeded two-choice 
tasks (Ratcliff, 1978; Ratcliff & McKoon, 2008; Wagen-
makers, 2009). In the model, unobserved psychological 
processes—represented by parameters—give rise to the 

Figure 1. The diffusion model as it applies to the lexical de-
cision task. A word stimulus (not shown) is presented, and two 
example paths represent the accumulation of evidence resulting 
in one correct response (light line) and one error response (dark 
line). Repeated application of the diffusion process yields histo-
grams of both correct responses (upper histogram) and incorrect 
responses (lower histogram). As is evident from the histograms, 
the correct (upper) word boundary is reached more often than 
the incorrect (lower) nonword boundary. The total RT consists of 
the sum of a decision component, modeled by the noisy accumula-
tion of evidence, and a nondecision component that represents the 
time needed for processes such as stimulus encoding and response 
execution.
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separation accounted for the observed changes in perfor-
mance with practice. Unfortunately, Ratcliff et al.’s design 
allowed the practice effect to be assessed only across three 
or four sessions.

To apply the diffusion model across many practice 
blocks and on the level of individual participants, it would 
be necessary to collect a lot of data. Here, we used a 
10,000-trial lexical decision experiment with 25 blocks 
of 400 trials each. Two participants were instructed to pay 
attention primarily to speed, and 2 other participants were 
instructed to pay attention primarily to accuracy.

Experiment

Method
Participants. Four undergraduate psychology students partici-

pated for course credit. All were native Dutch speakers.
Stimulus Materials and Design. In a lexical decision task, 

participants were presented with letter strings that had to be classi-
fied “word” (e.g., fume) or “nonword” (e.g., drapa). For this lexical 
decision task, we selected 200 low-frequency Dutch words, whose 
frequencies ranged from 0.31 to 5.48 per million (mean frequency = 
3.44 3 1026, SD = 1.29 3 1026; Baayen, Piepenbrock, & Gulikers, 
1995). A set of 200 pronounceable nonwords was created by replac-
ing a single letter in an existing Dutch word. (Vowels were replaced 
by vowels, and consonants by consonants. The words that were used 
to generate the nonwords were not used as word stimuli.) Words and 
nonwords were approximately matched in length. The set of 200 
words and 200 nonwords was the same for all participants and in all 
blocks of the experiment.

Participants completed 5 blocks per day on 5 consecutive days. 
The 25 blocks of 400 stimuli thus constituted 10,000 trials per par-
ticipant. Before each block, the same instructions were given. For 
the accuracy condition, Participants A1 and A2 were instructed to 
respond as quickly and accurately as possible. Their feedback was 
directed toward accurate responding. For the speed condition, Par-
ticipants S1 and S2 were instructed to be fast, but still accurate. 
Here, feedback was directed toward fast responding.

Procedure. Stimuli were presented on a 17-in. CRT screen 
about 40 cm from the participant, using the Presentation software 
for Windows (Version 10.3). Letters were presented in lowercase 
font, 6 mm in height, in white on a black background. Responses 
were registered using a two-button response device attached to the 
computer’s parallel port to achieve maximum timing accuracy. The 
experimenter was in the same room as the participants for the entire 
duration of the experiment.

For participants in the accuracy condition, RTs longer than 
2,000 msec were followed by the feedback message te langzaam! 
(i.e., “too slow!”), and RTs shorter than 200 msec were followed by 
the feedback message te snel (i.e., “too fast”). For RTs in the 200- 
to 2,000-msec time window, incorrect responses were followed by 
the feedback message fout (i.e., “error”), whereas correct responses 
did not trigger a feedback message. The duration of all feedback 
messages was 1,200 msec. Every trial started with a blank screen 
that was presented for 250 msec.

For participants in the speed condition, RTs longer than 750 msec 
were followed by the “too slow” feedback message. No feedback on 
accuracy was given. In all other respects, the speed condition was 
identical to the accuracy condition.

For every participant, the series of blocks was preceded by a short 
training block (with corresponding instructions) consisting of 15 
words and 15 nonwords, none of which were also present in the 
400 trials of the main experiment. The order of the stimuli was ran-
domized before each block. The participants were given a 4-min 
break after each block. Each five-block session lasted approximately 
60 min.

trade-off: At the price of an increase in RT, participants 
can decrease their error rate by widening the boundary 
separation.

4. Mean starting point (z). Starting point reflects the 
a priori bias of a participant for one or the other response. 
This parameter is usually manipulated via payoff or pro-
portion manipulations (Edwards, 1965; Wagenmakers 
et al., 2008; but see Diederich & Busemeyer, 2006).

5. Across-trial variability in starting point (sz). This pa-
rameter reflects the fact that starting point may fluctuate 
from one trial to the next, according to a uniform distribu-
tion with mean z and range sz. The sz parameter also allows 
the diffusion model to account for data in which error re-
sponses are systematically faster than correct responses.

6. Mean of the nondecision component of processing 
(Ter). This parameter encompasses the time spent on com-
mon processes—that is, those executed irrespective of the 
decision process. The diffusion model assumes that the 
observed RT is the sum of nondecision and decision com-
ponents (Luce, 1986):

RT = DT + Ter ,		  (3)

where DT denotes decision time. Therefore, nondecision 
time Ter does not affect response choice and acts solely to 
shift the entire RT distribution.

7. Across-trial variability in the nondecision compo-
nent of processing (st). This parameter reflects the fact 
that nondecision time may fluctuate from one trial to the 
next, according to a uniform distribution with mean Ter 
and range st. The st parameter allows the model to capture 
RT distributions that show a relatively shallow rise in the 
leading edge.

Many experiments attest to the validity and specificity 
of the parameters of the diffusion model. For instance, 
Ratcliff and Rouder (1998), Voss, Rothermund, and Voss 
(2004), and Wagenmakers et al. (2008) have shown that 
easier stimuli have higher drift rates, that accuracy in-
structions increase boundary separation, and that unequal 
reward rates or presentation proportions are associated 
with changes in starting point. These and other experi-
ments justify the psychological interpretation of the dif-
fusion model parameters in terms of underlying cognitive 
processes and concepts.

The Diffusion Model and the Effect of Practice
In this article, we study the extent to which practice 

affects the parameters of the diffusion model, which will 
allow us to draw conclusions in terms of the processes 
postulated by these parameters. The characteristic speedup 
with practice could be captured by several parameters of 
the diffusion model, but the prime candidate for a param-
eter that captures the practice effect is drift rate, because 
it reflects the ease with which people process stimulus 
information.

Consistent with this intuition, Ratcliff et al. (2006) re-
ported that drift rate increased with practice. However, 
their results also showed that boundary separation de-
creased (i.e., participants became less cautious with prac-
tice). Together, these changes in drift rate and boundary 
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as slow outliers. This filtering resulted in the elimination of 
2, 2, 37, and 126 fast guesses for Participants A1, A2, S1, 
and S2, respectively; this means that, for Participant S2, 
only 1.26% of the data were discarded. In the entire experi-
ment, only a single trial was classified as a slow outlier.

Descriptives: Emphasis on accuracy. Figures 2A 
and 2B show the effects of practice on accuracy and RT 
for Participants A1 and A2 (i.e., the accuracy condition). 
The upper panels show proportions of correct responses 

Results
In this section, we first summarize the data using de-

scriptive measures of RT and accuracy, and then analyze 
the data using the diffusion model. All analyses were con-
ducted on the level of individual participants.

Preprocessing of RT data. Lower bounds for accept-
able RTs were determined by visual inspection, which re-
vealed that 250 msec was a reasonable cutoff to eliminate 
fast guesses. RTs longer than 2,000 msec were designated 

Figure 2. Mean accuracy and RT quantiles (.1, .3, .5, .7, .9) for correct responses per practice block. Gray lines in the RT quantiles 
show 95% bootstrap confidence intervals. Accuracy-stressed participants improved on speed. Speed-stressed participants improved 
mainly on accuracy. (A) Accuracy-stressed Participant A1. (B) Accuracy-stressed Participant A2. (C) Speed-stressed Participant S1. 
(D) Speed-stressed Participant S2.
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Ter) for all participants. We only briefly mention results 
for the variability parameters sz, st, and h; more extensive 
results can be found in the supplemental materials.

Diffusion model inference: Drift rate. Figures 3 
and 4 show the posterior distributions of the drift rate pa-
rameter v for each of the 4 participants, for words and 
nonwords separately. In these figures and the ones that 
follow, we visualize the posterior distribution through a 
color coding scheme: High-density regions of the poste-
rior have a darker color than low-density regions.

All participants but A2 show a clear increase in drift 
rate for both words and nonwords (Figures 3 and 4). Note 
that for the participants in the speed condition, drift rate 
increases even in the later practice blocks.

Diffusion model inference: Boundary separation. 
Figure 5 shows the posterior distributions of the bound-
ary separation parameter a. Participants A1 and A2, from 
the accuracy condition, decrease their response caution 
throughout the experiment. This decrease in response cau-
tion combines with the increase in drift rate to explain why 
accuracy is approximately constant across practice (cf. 
Figures 2A and 2B), whereas RT means and variability 
noticeably decrease.

One might argue that, at least for Participants A1 and 
A2, errors are mainly caused by attentional lapses. Fur-
thermore, one might argue that the probability of mak-
ing an error due to an attentional lapse is approximately 
constant over practice. When RTs decrease with practice, 
these attentional lapses would then lead to a systematic 
underestimation of boundary separation. According to this 
account, the observed difference in boundary separation is 
a statistical artifact caused by model misspecification.

This misspecification account is vulnerable to at least 
two counterarguments. First, the supplemental materials 
show that both correct and error RTs decrease over time, 
and in a similar fashion. (The correlations of mean cor-
rect and error RTs over blocks are r = .95 for A1 and .92 
for A2.) Second, the RT distributions for error RTs are 
skewed to the right, and this skew decreases with practice. 
These phenomena are predicted by the diffusion model, 
but not by the misspecification account.

For the participants in the speed condition, S1 shows lit-
tle or no systematic change in boundary separation, but—
just as with the participants in the accuracy condition—S2 
does show a clear decrease in boundary separation with 
practice. Also note that, in line with the instructions, the 
participants in the accuracy condition have larger bound-
ary separations (i.e., more response caution) than do the 
participants in the speed condition.

Diffusion model inference: Response bias. Figure 6 
shows the posterior distributions of the response bias pa-
rameter B. This parameter gives the height of the starting 
point z as a proportion of boundary separation a, so that 
B = z/a. Thus, values of B ..5 indicate an a priori bias 
toward the word response, and values of B ,.5 indicate 
an a priori bias toward the nonword response. Both par-
ticipants in the accuracy condition start the experiment 
with a slight bias in favor of a word response and, over 
the practice sessions, develop a reverse preference for 

and the lower panels show RT quantiles (.1, .3, .5, .7, and .9) 
calculated for each block. In addition, the figures show 
95% bootstrap confidence intervals. Accuracy for words 
is largely constant over blocks, although accuracy for non-
words increases somewhat for Participant A1. As expected, 
both the mean and the spread of the RT distributions show 
marked decreases with practice. This pattern is evident both 
for correct responses (shown in Figure 2) and for error re-
sponses (shown in the supplemental materials).

Descriptives: Emphasis on speed. Figures 2C and 2D 
show the effects of practice on accuracy and RT for  
Participants S1 and S2 (i.e., the speed condition). Par-
ticipant S1 clearly improves on accuracy, with constant  
RTs from the fourth block onward. Participant S2 appears 
to speed up in the first 10 blocks and then shows stable 
RTs with increasing accuracy. For both participants, the 
spread of the RT distributions decreases with practice.

In summary, accuracy-stressed Participants A1 and A2 
improved mainly on speed, whereas speed-stressed Par-
ticipants S1 and S2 improved mainly on accuracy. For all 
participants, variability in RTs decreased. Note that for 
all participants, performance in the final blocks was both 
very fast and, for all but Participant S2, very accurate. 
Accuracy-stressed participants seem to have started near 
maximal accuracy, and speed-stressed participants reached 
their maximum speed after a few blocks of practice.

Diffusion model analyses. We used a Bayesian pa-
rameter estimation procedure (Vandekerckhove, Tuer
linckx, & Lee, 2008) to fit the model to the data. In 
Bayesian estimation procedures, probability distributions 
quantify uncertainty about the values of the model param-
eters. One generally starts with a vague prior distribution, 
which then gets updated by means of the data to yield a 
posterior distribution. This posterior distribution reflects 
knowledge about the model parameter after having seen 
the data (see, e.g., Gelman, Carlin, Stern, & Rubin, 2004). 
We also analyzed the data with other estimation proce-
dures (Vandekerckhove & Tuerlinckx, 2007; Voss & Voss, 
2007), and this yielded results that were similar but more 
variable.1

In our estimation procedure, all parameters were al-
lowed to vary freely across practice blocks, reflecting the 
exploratory nature of our analysis and the fact that we did 
not want to commit ourselves to a particular functional 
form of the practice effect. Within each practice block, 
drift rates were allowed to vary between words and non-
words (Wagenmakers et al., 2008), and so were the asso-
ciated trial-to-trial variabilities in drift rate (i.e., the hs); 
the latter modeling choice was motivated by the intuition, 
confirmed in early exploratory analyses, that nonwords, 
which by definition have no meaning, are more similar to 
each other than are words, which all have different mean-
ings and frequencies. Starting point was modeled as the 
bias (B) in favor of words over nonwords—that is, z/a. 
More details about the statistical modeling and model fit 
can be found in the supplemental materials.

Below, we describe the modeling results, discussing 
in turn each of the four most important parameters (drift 
rate v, boundary separation a, bias B, and nondecision time 
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time parameter Ter. For both participants in the accuracy 
condition, Ter decreases with practice (i.e., about 100 msec 
for both participants). These decreases in Ter account for 
approximately 40% of the total practice-induced decrease 
in mean RT, which is about 250 msec for both A1 and A2. 

nonword over word responses. For the participants in the 
speed condition, the practice-induced changes in bias are 
less systematic.

Diffusion model inference: Nondecision time. Fig-
ure 7 shows the posterior distributions of the nondecision 

Figure 3. Posterior distributions of drift rate parameter v across practice blocks (for accuracy-stressed participants). Dark 
colors represent high density. The white lines are cubic smoothed splines through the medians of the posterior distributions.
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Diffusion model inference: Variability parameters. 
In our Bayesian analyses, we estimated all parameters of the 
Ratcliff diffusion model, including the parameters that rep-
resent trial-to-trial variability in drift rate (h), in starting point 

The participants in the speed condition do not show a sys-
tematic decrease in Ter with practice, but they do display 
large block-to-block fluctuations in Ter that cover a range 
of about 100 msec.

Figure 4. Posterior distributions of drift rate parameter v across practice blocks (for speed-stressed participants). Dark colors 
represent high density. The white lines are cubic smoothed splines through the medians of the posterior distributions.
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Concluding Comments

According to our diffusion model decomposition, prac-
tice leads to an increase in the rate of information pro-
cessing, a decrease in response caution, and a decrease 
in nondecision time. In addition, participants also exhibit 
systematic changes in a priori bias.

(sz), and in nondecision time (st). The results show that, as 
expected, h was much higher for words than for nonwords. 
Also, h appeared to decrease with practice for word stimuli in 
the accuracy condition. The st parameter decreased with prac-
tice for all participants but S1. For sz, no structural effects of 
practice were found. Detailed results regarding the variability 
parameters can be found in the supplemental materials.

Figure 5. Posterior distributions of boundary separation parameter a across practice blocks. Dark colors represent high 
density. The white lines are cubic smoothed splines through the medians of the posterior distributions.
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future work should focus on transfer effects by including 
both old and new stimuli in the same task.

It should be acknowledged that the diffusion model 
is not an explanatory model of practice, and it does not 
describe how practice alters or adds memory representa-
tions. Ideally, one would like to fit our data to more sub-
stantive theories, such as Logan’s instance theory (Logan, 
1992), its successor ITAM (Logan, 2002), Nosofsky and 

Among these results, the practice-induced reduction 
of the nondecision component and the fluctuations in re-
sponse bias are both pronounced and unexpected. It is pos-
sible that the reduction in nondecision time is task- rather 
than stimulus-specific, hence reflecting increased famil
iarity with the general task requirements, the response but-
tons, and the processing of visual input and feedback dis-
played on the computer screen. To examine this possibility,  

Figure 6. Posterior distributions of response bias parameter B across practice blocks. Here, B is defined as z/a. Dark colors 
represent high density. The white lines are cubic smoothed splines through the medians of the posterior distributions.
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and boundary separation. It is likely that the substantive 
models can be extended to match the performance of the 
diffusion model, but this currently is not the case.

In sum, the results of our diffusion model decomposi-
tion are surprising, and they suggest that the traditional 
methods of analysis might provide a false sense of secu-
rity. Most traditional methods focus on improvements in 
either mean RT for correct responses or in response ac-
curacy, without any recourse to changes in the underlying 
processes. Our analysis strongly suggests that the practice 

Palmeri’s exemplar-based random-walk model (Nosofsky 
& Palmeri, 1997; Palmeri, 1997), Rickard’s component 
power laws model (Rickard, 1997), Anderson’s ACT–R 
(J. R. Anderson et al., 2004), or Cohen et al.’s PDP model 
(Cohen, Dunbar, & McClelland, 1990). Unfortunately, 
many of these models are less explicit about the decision 
process than the diffusion model. The diffusion model is 
able to fit entire RT distributions, both for correct and 
error responses, and to separately estimate components 
of processing such as nondecision time, response bias, 

Figure 7. Posterior distributions of nondecision time parameter Ter across practice blocks. Dark colors represent high density. 
The white lines are cubic smoothed splines through the medians of the posterior distributions.
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fusion model to experimental data. Psychonomic Bulletin & Review, 
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Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2008). A Bayes-
ian approach to diffusion process models of decision-making. In B. C. 
Love, K. McRae, & V. M. Sloutsky (Eds.), Proceedings of the 30th 
Annual Conference of the Cognitive Science Society (pp. 1429-1434). 
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NOTE

1. Our Bayesian analysis experienced problems of numerical stability 
only for the first block of Participant A2. This explains why the follow-
ing sections and graphs do not report any parameter estimates for this 
particular block of trials.

SUPPLEMENTAL Materials

Further detailed information about the results discussed in this article 
may be downloaded from http://pbr.psychonomic-journals.org/content/
supplemental.
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effect is the interactive combination of several underlying 
processes: People not only improve on stimulus process-
ing, but, at the same time, are able to adjust their response 
strategy. In combination with changes in nondecision 
time, these processes generate a data pattern that cannot 
be usefully abstracted in terms of mean RT alone. In con-
trast to focusing on the mathematical function that relates 
practice to mean RT for correct responses (i.e., power, ex-
ponential, or APEX), we feel that a model-driven analysis 
of the processes underlying the practice effect will be both 
more appropriate and more insightful.
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