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People generally slow down after they make an error, a phenomenon that is more pronounced for older
individuals than it is for young individuals. Here, we examine the origin of this age-related difference in
posterror slowing (PES) by applying the diffusion model to data from young and older participants
performing a random dot motion task and a lexical decision task. Results show that the PES effects on
response time and accuracy were qualitatively different for young and older participants. A diffusion
model analysis revealed that following an error, older participants became more cautious, processed
information less effectively, and spent more time on irrelevant processes. This pattern was evident in both
the random dot motion task and the lexical decision task. For young participants, in contrast, the origin
of the PES effect depended on the task that was performed: In the random dot motion task, the PES effect
was due to time spent on irrelevant processes; in the lexical decision task, the PES effect was due to
increased caution and decreased effectiveness in information processing. Overall, PES effects were much
larger in the lexical decision task than in the random dot motion task. These findings indicate that PES
originates from the interplay of different psychological processes whose contribution depends on both
task settings and individual differences.
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In most cognitive tasks, older people respond more slowly
than young people (Salthouse, 1985). Early research has led to
the pessimistic claim that older people slow down because they
suffer from a general decrease in the efficiency with which
neurons transfer information (Brinley, 1965; Cerella, 1985).
Today, however, many researchers agree that older people slow
down, at least in part, because they choose to be more cautious
than young people. This means that older participants often
choose to collect more evidence before they are willing to
commit to a decision, a strategy that may result in a substantial
loss of speed in return for a small gain in accuracy (Ratcliff,

Thapar, & McKoon, 2006b, 2010; Salthouse, 1979; Starns &
Ratcliff, 2010; Strayer, Wickens, & Braune, 1987; but see Mata
& Nunes, 2010).

Older people are not just more cautious than young people; they
also appear to have coarser control over their speed–accuracy trade-
off (Band & Kok, 2000; Rabbitt, 1979; Smith & Brewer, 1995). This
relatively coarse cognitive control is thought to be reflected in more
pronounced posterror slowing (PES). Posterror slowing is the phe-
nomenon that participants, after committing an error, tend to slow
down on the next trial. The common explanation of PES states that
participants constantly monitor their performance and that an error
signals the need for more cognitive control in order to keep perfor-
mance at an acceptable and relatively constant level of accuracy.
Specifically, participants are thought to interpret an error as a sign that
response criteria need to be increased; this increase ensures that the
decision on the next trial is based on more information, reducing the
probability of a second consecutive error. Thus, the fact that older
participants show a relatively pronounced PES effect may be due to
an excessive increase in response criteria following an error. This
explanation is conceptually consistent with the hypothesis that older
individuals are more cautious because they are highly motivated to
avoid errors.

However, other explanations of PES have been proposed. For
instance, PES could also be the result of a distraction of attention
(Notebaert et al., 2009) or delayed startup of information process-
ing due to time spent on irrelevant processes (e.g., overcoming
disappointment; Rabbitt & Rodgers, 1977; for a recent review, see
Danielmeier & Ullsperger, 2011).
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In this study, we assessed the psychological processes respon-
sible for the difference in PES between older and young partici-
pants. To do so, we needed to overcome two obstacles that com-
plicate the analysis of PES. First, speed and accuracy are in
trade-off and only simultaneous analysis of both variables can
reveal the psychological processes that underlie behavior. There-
fore, in this study, we applied the Ratcliff diffusion model (Rat-
cliff, 1978; Ratcliff & Tuerlinckx, 2002) to our data. The diffusion
model allows one to take into account response time (RT) and
accuracy simultaneously and to decompose the effects on both
variables in psychologically relevant underlying constructs. A
second challenge is pointed out by Dutilh, van Ravenzwaaij, et al.
(2012), who showed that the standard method of quantifying PES

(i.e., calculating the difference RT�posterror � RT�postcorrect) is con-
founded with global changes in performance over the course of an
experiment; these changes can create spurious PES or mask real
PES. Therefore, we applied the solution that is described by Dutilh
et al. and quantified PES by a local “robust” measure, that is, by
the difference in RT prior to and following each individual error.

The outline of this article is as follows. First, we shortly discuss
the literature on aging effects in RT tasks and the role of posterror
slowing. Second, we introduce the diffusion model. The third
section describes how PES analyses can be confounded by global
changes in behavior. Next, we present data from an experiment that
manipulates the speed–accuracy trade-off in a random dot motion
task. We present the results in terms of RT and accuracy and in terms
of the diffusion model parameters. While presenting the results, we
illustrate the importance of using the method described by Dutilh, van
Ravenzwaaij, et al. (2012) to overcome confounds of global changes
in performance. Finally, we assess the generalizability of our results
by applying the same PES analyses to an existing data set on lexical
decision (Ratcliff, Thapar, & McKoon, 2004).

Response Speed and Age

For many years, the difference in response speed between young
and older participants has been taken as support for a generalized-
slowing hypothesis of aging. This hypothesis states that people
slow down with age because all processes in the brain deteriorate
(Brinley, 1965; Salthouse, 1996).

Relatively recently, this generalized-slowing hypothesis was
challenged by Ratcliff and colleagues in a series of articles in
which these researchers used the drift diffusion model to obtain a
more detailed assessment of the effects of aging on task perfor-
mance (e.g., Ratcliff, Spieler, & McKoon, 2000; Ratcliff et al.,
2004; Ratcliff, Thapar, & McKoon, 2006a; Ratcliff et al., 2006b,
2010; Thapar, Ratcliff, & McKoon, 2003). As we show below, the
diffusion model allows one to decompose effects on RT and
accuracy into unobserved psychological processes. Diffusion
model decompositions showed that older participants were almost
always slower than young participants in the nondecisional com-
ponents of RT (e.g., stimulus encoding and motor time). The
diffusion model decompositions also showed that in many tasks,
older participants responded more cautiously than young partici-
pants (see also Strayer et al., 1987). It is important to note that only
in a subset of tasks (i.e., perceptual decision-making tasks) did the
diffusion model decompositions suggest that older participants
were less effective than younger participants in extracting infor-
mation from the stimulus (but see Spaniol, Madden, & Voss,

2006). These findings suggest that the general-slowing hypothesis
of aging is problematic. Instead, detailed diffusion model analyses
suggest that age-related slowing is a multifaceted phenomenon that
is often dominated by processes unrelated to the effectiveness with
which information is extracted and accumulated.

Older participants not only respond more slowly than young
participants on average, but they also exhibit a more pronounced
PES effect (Band & Kok, 2000; Rabbitt, 1979; Rabbitt & Vyas,
1980; Smith & Brewer, 1995). It is tempting to conclude that,
following an error, older participants increase their response
thresholds more than young participants (Smith & Brewer, 1995).
However, there are several alternative explanations for how an
error influences performance on the next trial, such as (a) the error
distracts attention away from the task (Notebaert et al., 2009); (b)
the error shifts people’s a priori bias away from the response that
was executed in error (Laming, 1968; Rabbitt & Rodgers, 1977);
(c) the error delays the startup of information accumulation be-
cause time is spent on irrelevant processes such as overcoming
disappointment (Rabbitt & Rodgers, 1977); or (d) the error causes
people to time the onset of the stimulus more precisely, preventing
the sampling of irrelevant information (Laming, 1968, 1979a).

Dutilh, Vandekerckhove, Forstmann, and Wagenmakers (2012)
have shown that the diffusion model is able to discriminate be-
tween the alternative explanations of PES listed above (see also
White, Ratcliff, Vasey, & McKoon, 2010). In this study, we used
the diffusion model to assess whether the PES effect in young and
older participants originates from changes in the same or different
psychological processes.

Accounting for Speed and Accuracy Simultaneously

There is a trade-off relation between RT and accuracy, and this
trade-off compromises the analysis of task performance when RT
and accuracy are considered in isolation (e.g., Wagenmakers, Van
der Maas, & Grasman, 2007; Wickelgren, 1977). In particular, it
can be difficult to assess performance differences between young
and older participants when the latter are known to respond more
cautiously, accepting a large loss in RT for small gains in accu-
racy. To quantify performance differences in the face of the
speed–accuracy trade-off, one requires a formal model of infor-
mation processing. In this study, we applied the diffusion model.
The diffusion model decomposes effects on RT and accuracy into
effects on underlying psychologically relevant processes. The dif-
fusion model naturally accounts for the speed–accuracy trade-off,
a key feature for the analysis of age-related slowing.

The Diffusion Model

In the diffusion model for speeded two-choice tasks (Ratcliff,
1978), stimulus processing is modeled as the noisy accumulation
of evidence over time. When the accumulated evidence reaches a
predefined evidence boundary, a response is initiated (see Figure
1). The four main parameters of the diffusion model are (1) drift
rate v (drift rate quantifies the speed of information processing,
reflecting the difficulty of the stimulus and the ability of the
participant); (2) boundary separation a (boundary separation quan-
tifies response caution, and thus determines the speed–accuracy
tradeoff); (3) starting point z (starting point quantifies a priori bias
for one the response options; and (4) nondecision time Ter (nondeci-
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sion time quantifies the time used for encoding the stimulus and
executing the motor response). The model specification is completed
by including parameters that specify across-trial variabilities in drift
rate, starting point, and nondecision time (Ratcliff & Tuerlinckx,
2002). These variabilities allow the model to account for empirical
phenomena such as situations in which errors are systematically faster
or slower than correct responses. For a more elaborate introduction to
the diffusion model and a review of applications, see Ratcliff and
McKoon (2008) and Wagenmakers (2009).

The preferred method to analyze RT data is to use the full diffusion
model as described above. However, to fit the diffusion model, one
needs at least enough data to estimate the distribution of correct RTs
and, more problematic, a distribution of at least, say, 10 error RTs.
Because the crucial condition in this study consisted of trials that
followed an error, we needed at least 10 errors that immediately
followed errors. For this reason, it was not possible to fit the full
diffusion to data of individual participants in this study.

The EZ-Diffusion Model

Fortunately, we could still apply the EZ–diffusion model (Wagen-
makers et al., 2007) to the data. A crucial advantage of this simplified
version of the diffusion model is that one can calculate the model
parameters in closed form from the percentage correct, the RT vari-
ance, and the RT mean. In contrast to the full model, this model uses
only the parameters drift rate v, boundary separation a, and nondeci-
sion time Ter. Thus, the model lacks the variability parameters and
bias parameter z. Nonetheless, van Ravenzwaaij and Oberauer (2009)
have show that the EZ–diffusion model is capable of capturing

experimental effects in its parameters and that the model is especially
useful when studying individual participants. For other applications of
the EZ–diffusion model, see, for example, Schmiedek, Oberauer,
Wilhelm, Suss, and Wittmann (2007), Schmiedek, Lövdén, and Lin-
denberger (2009), Kamienkowski, Pashler, Dehaene, and Sigman
(2011), and van Ravenzwaaij, Dutilh, and Wagenmakers (2012).

The EZ–diffusion model allowed us to test three different
explanations of PES for this data set: (1) An error distracts atten-
tion from the stimulus (PES effect in v), (2) an error leads to an
increase in response caution (PES effect in a), and (3) an error
delays the startup of information processing due to time spent on
irrelevant processes (PES effect in Ter). The use of the EZ–
diffusion model did not allow us to test posterror effects on a priori
bias for one of the response options, as quantified by z in the full
diffusion model. Note that the different explanations of PES are
not mutually exclusive, and behavior can be affected by more than
one of these processes simultaneously.

Quantification of PES

The most obvious and popular way to quantify PES is to
compare trials that follow errors with trials that follow correct
responses. However, Dutilh, van Ravenzwaaij, et al. (2012; see
also Laming, 1979b, p. 205) showed that this traditional analysis of
PES is vulnerable to a confound of global changes in behavior over
the course of an experiment. The confound can be best understood
by considering the following hypothetical scenario. A participant
starts an experimental session highly motivated. The participant is
very focused and responds quickly and accurately. Over the course
of the experimental session, however, fatigue starts to kick in and
consequently responses become slower and less accurate. Now,
consider that this participant does not slow down after errors, that
is, there is no true PES effect whatsoever. When calculating the
difference between RT on posterror trials versus postcorrect trials,
most posterror observations originate from the last part of the
session when the participant was least motivated and most errors
occurred. In that part of the session, the participant responded
slowly overall, resulting in a relatively slow mean RT for posterror
trials. In contrast, most postcorrect trials originate from the first
part of the session when accuracy was high and RT low, yielding
a relatively low mean RT on postcorrect trials. Thus, the compar-
ison of posterror versus postcorrect trials will indicate a PES
effect, although real posterror slowing is absent. Dutilh, van
Ravenzwaaij, et al. (2012) show that, in addition to spuriously
detecting PES, the traditional analysis can also underestimate or
mask real PES.

The solution offered by Dutilh, van Ravenzwaaij, et al. (2012)
is simple: Compare posterror trials with those postcorrect trials
that are also pre-error trials. This extra condition assures that trials
that comprise both sides of the comparison originate from the same
locations in the data set: surrounding errors. For convenience, we
refer to the conditions in this robust comparison as posterror
versus pre-error.

Experiment 1: Random Dot Motion

We first describe the method and results of a random dot motion
experiment. Random dot motion is a relatively low-level percep-
tual discrimination task with modest levels of error awareness.

Figure 1. Graphical illustration of the diffusion model. A “Right” stim-
ulus is presented (in this study, random dots motion to the right; see
Method section of Experiment 1). The two example sample paths represent
the accumulation of evidence that results in one correct response (“Right,”
light line) and one error response (“Left,” dark line). Repeated application
of the diffusion process yields histograms of both correct responses (upper
histogram) and incorrect responses (lower histogram). As is evident from
the histograms, the correct, upper boundary is reached more often than the
incorrect, lower boundary. The total response time (RT) consists of the sum
of a decision component, modeled by the noisy accumulation of evidence,
and a nondecision component that represents the time needed for processes
such as stimulus encoding and response execution.
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Later, we assess the generalizability of our findings by comparing
the results from the random dot motion task with those from a
more high-level task, lexical decision (i.e., Experiment 2).

Method

Participants. We tested 15 young people (student age; M �
21.80 years, SD � 2.27) and 19 older people (60–80 years old;
M � 68.27 years, SD � 5.89) on two occasions within a time span
of 2 weeks. Older participants were recruited from the Seniorlab
database.1 The young participants were rewarded by course cred-
its. The older people participated for a monetary reward.

Individualized deadlines. In the experiment, we alternated
blocks that required participants to respond accurately with blocks
that required participants to respond quickly. In the accuracy
blocks, participants were told to respond accurately but not waste
time. In the speed blocks, participants were asked to respond
quickly and risk committing errors. To encourage fast responding
in the speed blocks, we used a deadline. When participants took
longer than the deadline to respond, they received the warning
message “too slow” on the computer screen.

As mentioned above, recent studies suggest that older partici-
pants have longer nondecision times than younger participants
(Ratcliff et al., 2006b; Thapar et al., 2003). Therefore, it was
unreasonable to confront participants of both ages with the same
deadline. In the diffusion model, nondecision time is related to
total RT as follows:

RT � decision time � Ter.

This equation shows that with the same deadline on RT, older
participants—who have relatively long nondecision times
Ter—have available less decision time than young participants.
Because we wanted young and older participants to experience a
comparable level of speed stress, we adjusted the deadline for each
participant individually and computed it as follows:

RTdeadline
i � decision time�Ter

i ,

in which RTi
deadline is the individualized deadline for participant i.

This personal deadline was computed by adding participant i’s per-
sonal estimate of Ter to a fixed decision time that was the same for all
participants. Each participant’s personal estimate of Ter was calcu-
lated at the start of the experiment. This procedure permits similar
decision times for participants with varying nondecision times.

Materials. Participants completed a random dots motion task
(Britten, Shadlen, Newsome, & Movshon, 1992). The random dots
motion stimulus consists of a circular display of dots. The dots
appear, disappear, and are replaced in such a way that the entire
circle of dots appears to move. The apparent motion that the
participant perceives can be best described as the flickering of a
turning disco ball in a spotlight. This illusion is created as follows.
At each frame (50 ms), 120 dots are displayed. Every next frame,
an experimentally defined proportion Pmove of the dots from the
former frame are shifted a certain distance lmove to the target side
(e.g., right, if the correct response is right). The remaining portion
of the pixels is randomly replaced in the circle (independent of
their previous positions). Pmove was set to 50%; lmove was set to 1
pixel. We choose a dot size that is bigger than normal (diameter of
4 pixels) to account for the fact that some of the older participants

might have had small visual impairments. The circular aperture
had a 13-cm diameter. Presentation (Version 09.24.07) for Win-
dows was used to present the stimuli and register the responses.
Participants responded to the stimuli by pressing one of two
response buttons to indicate the direction of the apparent move-
ment (left or right).

Procedure. In two sessions within 2 weeks, participants were
tested individually in a room in which the experimenter was
present during the entire experiment. For each participant, the two
sessions took 1 hr each.

The first session started with two 50-trial training blocks. One
training block had speed instructions. In this block, a “too slow”
feedback was displayed when a deadline of 650 ms was passed.
The other training block had accuracy instructions and an “incor-
rect” feedback message was given on incorrect responses. Also,
after 1,500 ms, a “no response” warning was shown.

After participants were trained on the stimuli and the deadline in
the speed blocks, another 300-trial speed block was administered. The
data of the last 250 trials of this block were used for the personal
estimate of Ter. This personal estimate of Ter was then used to
calculate the personal deadline, as described above. Based on a pilot
study with the same task, we choose RTdecision � 200 ms because this
value plus an average Ter yielded a reasonable deadline. The personal
deadline that was determined with this procedure was used in the
speed blocks throughout both sessions of the experiment.

After the practice blocks and the block to calculate the nonde-
cision time estimate, the main experiment started. Blocks with
speed instructions were alternated with blocks with accuracy in-
structions. Each block contained 100 trials. After each block,
participants had a self-paced break. Testing was limited to 2 hr;
hence, the amount of blocks administered depended on the partic-
ipant’s pace. Young participants completed on average 15.6 speed
blocks and 15.4 accuracy blocks. Older participants completed on
average 13.0 speed blocks and 13.5 accuracy blocks.

Preprocessing. The main cells for the analysis of PES con-
tained as many observations as there were errors. To obtain reli-
able parameter estimates, we selected for analysis only those
participants who made at least 50 errors in each condition (speed
and accuracy instructions), leaving 15 young and 16 older partic-
ipants. Furthermore, before carrying out the analyses, we deleted
outliers with responses slower than 2,500 ms considered too slow
and responses faster than 150 ms considered too fast.

Results

Deadlines. As expected, the nondecision times estimated at
the beginning of the experimental session were somewhat higher
for older (368 ms, SD � 42) than for young participants (350 ms,
SD � 28). Although this difference is modest on the group level,
individualized nondecision time estimates ranged from 265 ms to
435 ms. This 130-ms range in nondecision time estimates suggests
that the deadline adjustment procedure is useful to equate speed
pressure over participants.

We first report the descriptive results on RT and accuracy and
then turn to the analyses with the EZ–diffusion model.

1 Seniorlab is a organization that mediates between older people and
researchers (http://www.seniorlab.nl).
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Descriptive results. The current data set illustrates the poten-
tial impact of analyzing PES either with the traditional method or
with the robust method. In this section, we first report the results
of both analyses, beginning with the robust analysis.

Posterror effect on RT and accuracy: Robust analysis.
Figure 2 shows the results of the robust analysis, based on a
comparison between posterror and pre-error trials. The left panels
show results for young participants, and the right panels show
results for older participants. The upper panels show the posterror
versus pre-error difference for each RT quantile, plotted against
the RT quantiles in pre-error trials. This delta plot (De Jong, Liang,
& Lauber, 1994; Pratte, Rouder, Morey, & Feng, 2010; Speckman,
Rouder, Morey, & Pratte, 2008) shows PES-induced changes
across the entire RT distribution.

In both the speed and the accuracy conditions, young partici-
pants responded between 20 and 40 ms slower after an error, a
slowdown that is roughly constant across the RT distribution. For
older participants, in contrast, the PES effect increased across the
RT distribution. In the fast 10% quantile, older participants were
about 30 ms slower after an error, but this difference increased to
around 70 ms in the slow 90% quantile. Thus, PES expressed itself
differently for young and older participants; for young participants,
the RT distribution was shifted by a constant amount, whereas for
older participants, errors shifted and skewed the RT distribution.
This qualitative difference between young and older participants
was only evident from the distribution of RT and would have gone
unnoticed had we considered only mean RT.

In both the speed and the accuracy conditions, for both age
groups, there appears to be no PES effect on accuracy. Clearly,
however, accuracy for both groups was higher in the accuracy
condition than in the speed condition.

A comparison of overall performance for older participants and
young participants shows that older participants were less accurate
than young participants overall. Also, for both the speed and the
accuracy condition, the pre-error RT distribution for older partic-
ipants was shifted and stretched out relative to that for the young
participants. This indicates that older participants were slower than
young participants over the entire distribution, a difference that
increased in the tail of the distribution.

Posterror effect on RT and accuracy: Traditional analysis.
Figure 3 shows results based on the traditional analysis of PES,
that is, where the y-axis represents the traditional quantile RT
difference between posterror and postcorrect trials (without the
correction discussed above). At first glance, the figure looks sim-
ilar to Figure 2. However, in Figure 3, the PES effect is smaller in
both conditions and for both age groups. Also, Figure 3 suggests
that older participants have a PES effect on accuracy. Because we
deem these results an artifact of the traditional analysis procedure,
we do not discuss them further here.

Now that we have illustrated the importance of contrasting the
right conditions, we turn to the diffusion model analysis of the
effects found with the robust PES method.

Figure 2. Robust analysis of posterror slowing in Experiment 1 (random
dot motion). The figure shows how response time (RT) and accuracy differ
between posterror and pre-error trials for both age groups, separately for
speed and accuracy blocks. All RT quantiles are slower posterror than
pre-error; for older participants, this difference increases over the five RT
quantiles (at 10%, 30%, 50%, 70%, and 90%). The quantiles on the x-axis
and differences on the y-axis were calculated per participant before aver-
aging. Error bars contain 2 standard errors around across-participant
means. Lower panels show that there is no posterror effect on accuracy.

Figure 3. Traditional analysis of posterror slowing in Experiment 1
(random dot motion). The figure shows how response time (RT) and
accuracy differ between posterror and postcorrect trials for both age
groups, separately for speed and accuracy blocks. All RT quantiles are
slower posterror than pre-error; for older participants, this difference in-
creases over the five RT quantiles (at 10%, 30%, 50%, 70%, and 90%). The
quantiles on the x-axis and differences on the y-axis were calculated per
participant before averaging. Error bars contain 2 standard errors around
across-participant means. Lower panels suggest that there is a posterror
decrease of accuracy for older participants. The results in this figure serve
only as an illustration of the difference between the traditional and robust
analysis (see Figure 2).
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Modeling results. Figure 2 shows that the PES effect was
qualitatively different for young and older participants, suggesting
that different psychological processes underlie the effect for both
groups. To quantify this intuition, we applied the EZ–diffusion
model and plotted the model parameters in Figure 4. Note that the
EZ–diffusion model parameters were calculated separately for
each participant. The amount of data available in each cell of the
analysis depended on the amount of errors a participant made.

To gauge the difference between parameter values shown in
Figure 4, we quantified the evidence in favor of or against the null
hypothesis using a default Bayesian t test (Rouder, Speckman,
Sun, Morey, & Iverson, 2009; Wetzels et al., 2011; Wetzels,
Raaijmakers, Jakab, & Wagenmakers, 2009). The resulting Bayes
factor BF10 quantifies how much more (or less) likely the data are
under the alternative hypothesis than under the null hypothesis. For
instance, a BF10 of 2 indicates that the data are twice as likely
under the alternative than under the null hypothesis. An important
advantage of calculating the Bayes factor is that it allowed us to
quantify evidence in favor of the null as well as in favor of the
alternative hypothesis. Analyses were performed on data collapsed
over irrelevant conditions.

The two leftmost panels of Figure 4 show that the drift rate was
higher for young participants than for older participants (BF10 �
172.2), indicating that the efficiency of information processing
was higher for young than for older participants. The two center
panels of Figure 4 show that boundary separation was higher for
older participants than for young participants (BF10 � 417.3),
indicating that older participants were more cautious than young
participants. The two rightmost panels of Figure 4 show that
nondecision time was higher for older participants than for young
participants (BF10 � 170.4), indicating that older participants
needed more time to encode stimuli and execute the motor re-
sponse than young participants.

Inspection of the two center panels of Figure 4 also confirms
that boundary separation was higher in the accuracy blocks than
in the speed blocks for both young (BF10 � 303.3) and older
(BF10 � 158.6) participants.

Note that the error bars in Figure 4 were computed separately
for each condition. A more accurate assessment of the PES effects
on the model parameters can be obtained by plotting these effects
within-subjects, as in Figure 5.

Figure 5 shows, for both young and older participants, the
difference in the parameter estimates between pre-error and pos-
terror trials. The posterror effects on neither of the parameters
differed between speed and accuracy conditions (BF10s � 0.5);
therefore, we collapsed the results across the speed and accuracy
conditions before plotting the figures and conducting the analyses.

The advantage of Figure 5 over Figure 4 is that it allows an
assessment of the distribution of posterror effects over participants.
Inspecting the leftmost box plots in each panel from Figure 5, the
data show that young participants had a nondecision time that was
systematically higher after an error, BF10 � 134.7. Neither drift
rate (BF10 � 0.16) nor boundary separation (BF10 � 0.27) differed
before and after errors.

The rightmost box plots in each panel from Figure 5 show the
results for older participants. Here, three effects are present. First,
older participants had lower drift rates after errors (BF10 �
1872.9), indicating a decrease in the speed of information process-
ing. Second, boundary separation increased after errors (BF10 �
10.3), indicating an increase in response caution. Finally, as for
young participants, nondecision times increased after errors
(BF10 � 16.7), indicating that older participants might waste some
time on irrelevant processes after committing an error.

Table 1 shows the across-participant correlations between pos-
terror effects on the three parameters. The correlations suggest that
for both young and older participants, the effects on drift rate and

Figure 4. Experiment 1 (random dot motion) posterror effects on the three parameters of the EZ–diffusion
model separately for the two age groups and the two experimental conditions. Error bars enclose 2 standard
errors. See text for details.
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boundary often go hand in hand. Also, for older participants, the
effects on drift rate are often accompanied by effects on nondeci-
sion time. These correlations suggest that the multivariate nature of
the posterror effect that is shown in Figures 4 and 5 cannot be
attributed solely to the aggregation of different univariate effects
over participants.

The above results are statistically compelling: The Bayes factors
clearly indicate that, for older participants, posterror effects are
reflected in drift rate, boundary separation, and nondecision time;
for young participants, the Bayes factors clearly indicate that
posterror effects are reflected in nondecision time. Compared with
p values, Bayes factors are more conservative and less eager to
support the alternative hypothesis (e.g., Berger & Sellke, 1987;
Wetzels et al., 2011). For example, data for which the p value
equals .05 yield at most a Bayes factor of 2.46, and data for which
the p value equals .01 yield at most a Bayes factor of 7.99 (Sellke,
Bayarri, & Berger, 2001).2 In addition, the default Bayesian t test
is relatively conservative. Taken together, this means that the
evidence for the above effects is relatively strong.

Moreover, our conclusions are conceptually consistent with the
observed data: Following an error, the RT distributions for older
participants skew out, and this is accommodated by a decrease in
drift rate. At the same time, boundary separation has to increase in
order to keep accuracy constant.

A note of caution: Our statistical analyses do not warrant the
claim that, for young participants, posterror effects are reflected

2 These Bayes factors are upper bounds obtained by considering the data
and choosing the parameter prior that provides maximum support for the
alternative hypothesis. See Sellke et al. (2001) for details.

Figure 5. Experiment 1. Box plots showing the posterror effects (posterror – pre-error) on the three
EZ– diffusion parameters for both young and older participants, collapsed over speed and accuracy
conditions. The boxes represent the .25 and .75 percentiles of the distribution of parameter effects. The error
bars extend to the highest and lowest value, excluding the values that are away from the box’ outer edge
more than 1.5 times the quartile range within the box. Those extreme values are plotted as separate points.

Table 1
Correlations Between Parameters in Experiment 1
(Random Dot Motion)

Group �v �a �Ter

Young
�v — BF10 � 1000 BF10 � 1.3
�a �.89 — BF10 � 2.7
�Ter .47 �.56 —

Older
�v — BF10 � 83.3 BF10 � 14.9
�a �.79 — BF10 � 4.6
�Ter .70 �.61 —

Note. v � drift rate; a � boundary separation; Ter � nondecision time.
Across-participant correlations between parameter effects are shown in the
lower left triangles (bold face). The upper right triangles contain the
associated two-sided Bayes factors (BF10) in favor of the alternative
hypothesis of a nonzero correlation.
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only in nondecision time. This claim requires that the Bayes factor
supports the null hypothesis of no error-induced effects on drift
rate and boundary separation. For the present data set, the evidence
in favor of both null hypotheses is suggestive but not conclusive.
This ambiguity is also apparent from the fact that the error-induced
effects on drift rate and boundary separation are not statistically
different between young and older participants (i.e., BF10 � 1.41
and BF10 � 0.26, respectively). Hence, it would be premature to
conclude that the PES effects on the model parameters are differ-
ent between the young and the older participants (Gelman & Stern,
2006; Nieuwenhuis, Forstmann, & Wagenmakers, 2011). Never-
theless, the data do warrant the conclusion that for older partici-
pants, PES manifests itself in drift rate, boundary separation, and
nondecision time, whereas for young participants, PES manifests
itself in nondecision time.

Model evaluation. Figure 6 shows the empirical quantiles for
all experimental conditions plotted against the diffusion model
predictions based on the parameter values displayed in Figure 4.
The fit is very satisfactory in general, although in the accuracy
blocks for older participant, there is a slight misfit in the highest
(90%) quantile for both pre-error and posterror trials.

Experiment 2: Lexical Decision

In Experiment 1, the posterror effects for young and older
participants were contrasted in a moving dots task. The locus of
these posterror effects might be specific to the domain of percep-
tual decision making. In addition, the posterror effects were mod-
est in size, perhaps reflecting a limited error awareness or a

realization that the perceptual errors are to some extent unavoid-
able. For these reasons, it is important to assess the generalizability
of the results obtained in Experiment 1. To this aim, we now
present data from a very different decision-making task: lexical
decision. This data set has been published previously by Ratcliff et
al. (2004), but the posterror effects in this data set remain to be
examined.

Method

The data that we analyze below comprise the two lexical deci-
sion experiments of Ratcliff et al. (2004). In both studies, young
and older participants responded to 2,100 lexical decision stimuli.
The two experiments differed only with respect to the nonword
stimuli used. In the first experiment, the nonwords were pro-
nounceable; in the second experiment, the nonwords were random
letter strings. Preliminary analyses showed that the posterror ef-
fects in both data sets were very similar. So, for ease of presen-
tation, we report the results of both data sets combined. The first
data set in Ratcliff et al. (2004) comprises 54 young and 44 older
participants; the second comprises 54 different young and 40
different older participants.

The analyses presented below are again based on posterror
versus pre-error trials. The number of errors that each participant
made thus limits the number of data points. Again, we therefore
performed analyses on only those participants who committed at
least 50 errors. This selection left 102 young and 58 older partic-
ipants’ data to analyze. As in Experiment 1, we deleted responses
slower than 2,500 ms and responses faster than 150 ms.

Figure 6. Model fit for the data from Experiment 1 (random dot motion). Empirical response time (RT)
quantiles (10%, 30%, 50%, 70%, and 90%) are plotted against RT quantiles predicted by the EZ–diffusion
model.
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Results

Descriptive results. The upper panels of Figure 7 display
the effect of errors on RT as a delta plot (compare Figure 2).
The effects of errors on RT are clearly much larger than the
effects in the perceptual task of Experiment 1. The upper left
panel shows that young participants were significantly slower
after errors than before errors. In particular, the effect on the
slow 90% quantile of the RT distribution (about 320 ms) was
larger than the effect on the fast 10% quantile of the distribution
(about 80 ms). The right panel shows that the effects for older
participants were much stronger than the effects for younger
participants. Again, the effect of errors was much larger in the
tail of the distribution (about 590 ms) than in the leading edge
of the distribution (about 200 ms). The lower two panels show
that errors had no effect on the accuracy of responses for either
young or older participants.

Modeling results. The modeling of the data of Experiment 2
was performed in the same way as the modeling in Experiment 1.
The sole difference between the two situations is that Experiment
2 did not feature a speed–accuracy manipulation. The three panels
of Figure 8 each show a parameter of the EZ–diffusion model
before and after errors for both young and older participants. Drift
rate did not differ between young and older participants (BF10 �
0.089). Boundary separation and nondecision time were higher for
older than for young participants (BF10 � 1000 for both parame-

ters). These results qualitatively replicate the results of Ratcliff et
al. (2004).

The distributions of within-participant differences in parameter
estimates between pre-error and posterror trials are shown in
Figure 9. The leftmost box plots in each panel from Figure 9 show
the results for young participants. First, young participants had
lower drift rates after errors (BF10 � 1000), indicating a decreased
speed of information processing. Second, young participants had a
higher boundary separation (BF10 � 1000) after errors, indicating
an increased response caution. No posterror effect was found on
nondecision time (BF10 � 0.25).

The rightmost box plots in each panel show the results for older
participants. First, older participants had lower drift rates (BF10 �
1000) after errors, indicating a decreased speed of information
processing. Second, they showed higher boundary separation
(BF10 � 1000), indicating increased response caution. Third, older
participants had a higher nondecision time after errors (BF10 �
1000), indicating that those participants spent time on irrelevant
processes after committing an error.

A test on the age differences for the posterror effects confirmed
that the only posterror effect to differ between young and older
participants was the one for nondecision time (BF10 � 1000), that
is, after an error the older participants increased their nondecision
time more than younger participants. Table 2 shows the correla-
tions between posterror effects on the three parameters of the
EZ–diffusion model. The positive correlations suggest that the
multivariate nature of the posterror effect in Figures 8 and 9 was
not caused by aggregating different univariate effects over partic-
ipants.

Model evaluation. Figure 10 shows the empirical quantiles for
all experimental conditions plotted against the diffusion model
predictions based on the parameter values displayed in Figure 8.
The fit is very satisfactory in general, although the lowest quantiles
for both young and older participants are slightly underestimated
for both pre-error and posterror responses.

Discussion

This study focused on performance differences between
young and older participants in speeded decision-making tasks.
Our results confirmed that older participants are more cautious
than young participants. Also, our results confirmed that non-
decision times are larger for older participants and that, only in
perceptual tasks, the speed of information processing tends to
be lower for older participants (Ratcliff et al., 2006a, 2006b; but
see Spaniol et al., 2006). More specifically, however, the goal
of this study was to study age-related differences in posterror
performance. Our PES effects are consistent with those reported
by Smith and Brewer (1995): Older participants slow down
more strongly after errors than young participants. A delta plot
of the data revealed that in a perceptual task, the PES effect for
young participants was qualitatively different from that for
older participants; for young individuals, an error only shifts the
RT distribution, whereas for older individuals, an error shifts
and skews the RT distribution. In the lexical decision task, the
PES effect was qualitatively similar for both age groups, but
more pronounced for the older participants.

To obtain a more detailed understanding of the psychological
processes that drive the posterror effects, we applied the diffu-

Figure 7. Robust analysis of posterror slowing in Experiment 2 (lexical
decision). The figure shows how correct response time (RT) and accuracy
differ between posterror and pre-error trials for both age groups, separately
for speed and accuracy blocks. All RT quantiles are slower posterror than
pre-error; for both young and older participants, this difference increases
over the five RT quantiles (at 10%, 30%, 50%, 70%, and 90%). The
quantiles on the x-axis (at 10%, 30%, 50%, 70%, and 90%) and differences
on the y-axis were calculated per participant before averaging. Error bars
contain 2 standard errors around across-participant means. Lower panels
show that there is no posterror effect on accuracy for either young or older
participants.
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sion model to the observed data. The diffusion model decom-
position showed that nondecision time increased after an error
for both young and older participants in the perceptual task and
only for the older participants in the lexical decision task. This
change in the shift of the RT distribution can have several
reasons, but two hypotheses seem particularly plausible in these
experiments. First, it is possible that participants needed time to
evaluate the error, to overcome disappointment, or to internally
berate themselves. Second, it is possible that on the trial fol-
lowing an error, participants pressed the response button less
firmly because of error-induced hesitation or lack of confi-
dence. The diffusion model cannot distinguish between these
hypotheses because the nondecision time encompasses both the
time prior to the onset of the information accumulation process
and the time after the information accumulation process has
terminated (see Figure 1). Nevertheless, future work could test
the hesitation hypothesis empirically by using a membrane key
or force button; if the hesitation hypothesis is true, a more
sensitive measurement of response execution may reduce or
eliminate the posterror effect on nondecision time. The young
college students in Experiment 2 differed from the older par-
ticipants in that they did not show a posterror increase in
nondecision time. This difference might reflect the college
students’ experience with the lexical decision task. This expe-
rience might have caused indifference concerning the errors that
are inevitably committed in performing such a task. Therefore,
no time was spent thinking over the errors.

The diffusion model decomposition also revealed that, for the
older participants in the perceptual task and for both young and
older participants in the lexical decision task, the occurrence of an
error reduced drift rate. A plausible explanation for this reduction
in the efficiency of information processing is that the evaluation of

the error message is still ongoing when the next stimulus has to be
processed; as a result, fewer cognitive resources are available for
the primary task.

Finally, the diffusion model decomposition showed that older
participants in the perceptual task and both young and older
participants in the lexical decision task tended to become more
cautious after committing an error. This finding is in line with the
common explanation of PES as a strategic adjustment of response
thresholds, and it is consistent with conclusions drawn by Smith
and Brewer (1995) and Dutilh, Vandekerckhove, et al. (2012). By
increasing response thresholds, participants are able to increase the
probability of a correct response at the cost of a decrease in
response speed.

Altogether, the results from this study challenge the common
explanation of PES in terms of an adjustment in boundary
separation. In contrast to this unitary explanation, PES appears
to be a multifaceted phenomenon that is associated with
changes in three psychological processes. Furthermore, the
comparison of the two different tasks in this study showed that
the nature of PES depends on both individual differences (viz.,
age) and task settings (viz., perceptual vs. lexical decision
making). For example, consider the finding that young partic-
ipants in the perceptual task did not increase their response
caution, whereas they did in the lexical decision task. A plau-
sible explanation for this difference might be that in a lexical
decision task, participants are usually aware of their errors;
moreover, participants may realize that if they had responded
more carefully, they could have avoided most errors. In the
moving dots task, in contrast, participants may only have lim-
ited error awareness; moreover, they may not feel that respond-
ing more carefully reduces the probability of making an error.
This suggestion is supported by the results of Dutilh, Vande-

Figure 8. Experiment 2 (lexical decision) posterror effects on the three parameters of the EZ–diffusion model
separately for the two age groups. Error bars enclose 2 standard errors. See text for details.
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kerckhove, et al. (2012), who applied the diffusion model to
assess and decompose PES in a large lexical decision experi-
ment. Dutilh et al. concluded that in this lexical decision
experiment, PES was largely due to an increase in response
caution after errors. In sum, these different results suggest that
the components that underlie the PES effect depend on factors
that vary across tasks and participants. Moreover, the different
components of the PES effect might be mediated by common
underlying factors, such as error awareness and the negative

affect associated with errors. Future experimental work should
establish how error awareness and the affective consequences
of errors influence the nature of the PES effect.

The conclusions in this study were made possible by a combi-
nation of two relatively novel methods in the analysis of PES. First
was the application of a robust measure for PES (i.e., RTposterror –
RTpre-error) that is not confounded by global changes in motivation
or response caution in the way that the traditional measure (i.e.,
RTposterror – RTpostcorrect) is. Second, the application of the diffu-
sion model allowed us to study not just changes in RT and
accuracy, but draw conclusions based on the underlying psycho-
logical processes that change following an error.Table 2

Correlations Between Parameters in Experiment 2
(Lexical Decision)

Group �v �a �Ter

Young
�v — BF10 � 1000 BF10 � 1000
�a �.75 — BF10 � 10.4
�Ter .45 �.29 —

Older
�v — BF10 � 1000 BF10 � 7.6
�a �.85 — BF10 � 7.7
�Ter .36 �.36 —

Note. v � drift rate; a � boundary separation; Ter � nondecision time.
Across-participant correlations between parameter effects are shown in the
lower left triangles (bold face). The upper right triangles contain the
associated two-sided Bayes factors (BF10) in favor of the alternative
hypothesis of a nonzero correlation.

Figure 9. Experiment 2 (lexical decision) box plots showing the posterror effects (posterror – pre-error) on the
three EZ–diffusion parameters for both young and older participants. The boxes represent the .25 and .75
percentiles of the distribution of parameter effects. The error bars extend to the highest and lowest value,
excluding the values that are away from the box’ outer edge more than 1.5 times the quartile range within the
box. Those extreme values are plotted as separate points.

Figure 10. Model fit for the data from Experiment 2 (lexical decision).
Empirical RT quantiles (10%, 30%, 50%, 70%, and 90%) are plotted
against response time (RT) quantiles predicted by the EZ–diffusion model.
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