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We revisit the results of the recent Reproducibility Project: Psychology by the Open Science Collaboration. We compute Bayes factors—a
quantity that can be used to express comparative evidence for an hypothesis but also for the null hypothesis—for a large subset (N = 72) of
the original papers and their corresponding replication attempts. In our computation, we take into account the likely scenario that publication
bias had distorted the originally published results. Overall, 75% of studies gave qualitatively similar results in terms of the amount of
evidence provided. However, the evidence was often weak (i.e., Bayes factor < 10). The majority of the studies (64%) did not provide strong
evidence for either the null or the alternative hypothesis in either the original or the replication, and no replication attempts provided strong
evidence in favor of the null. In all cases where the original paper provided strong evidence but the replication did not (15%), the sample
size in the replication was smaller than the original. Where the replication provided strong evidence but the original did not (10%), the
replication sample size was larger. We conclude that the apparent failure of the Reproducibility Project to replicate many target effects can
be adequately explained by overestimation of effect sizes (or overestimation of evidence against the null hypothesis) due to small sample
sizes and publication bias in the psychological literature. We further conclude that traditional sample sizes are insufficient and that a more
widespread adoption of Bayesian methods is desirable.

Bayesian inference | Reproducibility project

The summer of 2015 saw the first published results of the long-
awaited Reproducibility Project: Psychology by the Open Science
Collaboration (Open Science Collaboration, 2015) (henceforth
OSC). In an attempt to closely replicate 100 studies published
in leading journals, fewer than half were judged to successfully
replicate. The replications were pre-registered in order to avoid
selection and publication bias and were evaluated using multi-
ple criteria. When a replication was judged to be successful if
it reached statistical significance (i.e., p < .05), only 39% were
judged to have been successfully reproduced. Nevertheless, the
paper reports a .51 correlation between original and replication
effect sizes, indicating some degree of robustness of results (see
their Fig. 3).

Much like the results of the project, the reactions in media
and social media have been mixed. In a first wave of reactions,
headlines ranged from the dryly descriptive “Scientists replicated
100 psychology studies, and fewer than half got the same results”
(Handwerk, 2015) and “More than half of psychology papers are
not reproducible” (Jump, 2015) to the crass “Study reveals that a
lot of psychology research really is just ‘psycho-babble’ ” (Connor,
2015). A second wave of reactions shortly followed. Editorials
with titles such as “Psychology is not in crisis” (Feldman Barrett,
2015) and a statement by the American Psychological Association
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(American Psychological Association, 2015) were quick to empha-
size the possibility of many hidden moderators that rendered the
replications ineffective. OSC acknowledges this: “unanticipated
factors in the sample, setting, or procedure could still have altered
the observed effect magnitudes,” but it is unclear what, if any, bear-
ing this has on the robustness of the theories that the original
publications supported.

In addition to the unresolved possibility of hidden moderators,
there is the issue of lacking statistical power. The statistical power
of an experiment is the frequency with which it will yield a statis-
tically significant effect in repeated sampling, assuming that the
underlying effect is of a given size. All other things—such as the
design of the study and the true size of the effect—being equal,
statistical power is determined by an experiment’s sample size.
Low-powered research designs undermine the credibility of statisti-
cally significant results in addition to increasing the probability of
nonsignificant ones (see (Button et al., 2013) and the references
therein for a detailed argument); furthermore, low-powered studies
generally provide only small amounts of evidence (in the form of
weak Bayes factors; see below).

Among the insights reported in OSC is that “low-power research
designs combined with publication bias favoring positive results to-
gether produce a literature with upwardly biased effect sizes,” and
that this may explain why replications—unaffected by publication
bias—show smaller effect sizes. Here, we formally evaluate that
insight, and use the results of the Reproducibility Project: Psychol-
ogy to conclude that publication bias and low-powered designs
indeed contribute to the poor reproducibility, but also that many of
the replication attempts in OSC were themselves underpowered.
While the OSC aimed for a minimum of 80% power (with an av-
erage of 92%) in all replications, this estimate was based on the
observed effect size in the original studies. In the likely event that
these observed effect sizes were inflated (see next section), the
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sample size recommendations from prospective power analysis
will have been underestimates, and thus replication studies will
tend to find mostly weak evidence as well.

Publication bias. Reviewers and editors in psychology journals
are known to put a premium on ‘positive’ results. That is, they prefer
studies in which a statistically significant result is used to support
the existence of an effect. Nearly six decades ago, Sterling (1959)
noted this anomaly in the public record: In four prominent psychol-
ogy journals, 95 to 99% of studies that performed a significance
test rejected the null hypothesis (i.e., H0). Sterling concludes by
noting two key findings, “Experimental results will be printed with
a greater probability if the relevant test of significance rejects H0,”
and, “The probability that an experimental design will be replicated
becomes very small once such an experiment appears in print” (p.
33).

Moreover, it is a truism that studies published in the psychology
literature are only a subset of the studies psychologists conduct,
and various criteria are used to determine if a study should be
published in a given journal. Studies that do not meet the criteria
are relegated to lab file drawers (Rosenthal, 1979). A selective
preference for publishing studies that reject H0 is now known as
publication bias, and is recognized as one cause of the current
crisis of confidence in psychology (Pashler & Wagenmakers, 2012).

When journals selectively publish only those studies that
achieve statistical significance, average published effect sizes in-
evitably inflate because the significance threshold acts as a filter;
only the studies with the largest effect sizes have sufficiently low
p-values to make it through to publication. Studies with smaller,
non-significant effects are rarely published, driving up the average
effect size (Ioannidis, 2008). Readers who wish to evaluate origi-
nal findings and replications alike must take into account the fact
that our “very publication practices themselves are part and parcel
of the probabilistic processes on which we base our conclusions
concerning the nature of psychological phenomena” (Bakan, 1966,
p. 427). Differently put, the publication criteria should be consid-
ered part of the experimental design (Walster & Cleary, 1970). For
the current project, we choose to account for publication bias by
modeling the publication process as a part of the data collection
procedure, using a Bayesian model averaging method proposed
by Guan and Vandekerckhove (2016) and detailed in Section 2.2
below.

Methods

The Bayes factor. To evaluate replication success we will make
use of Bayes factors (Etz & Wagenmakers, 2015; Kass & Raftery,
1995). The Bayes factor (B) is a tool from Bayesian statistics that
expresses how much a data set shifts the balance of evidence
from one hypothesis (e.g., the null hypothesis H0) to another (e.g.,
the alternative hypothesis HA). Bayes factors require researchers
to explicitly define the models under comparison.

In this report we compare the null hypothesis of no difference
against an alternative hypothesis with a potentially nonzero effect
size. Our prior expectation regarding the effect size under HA is
represented by a normal distribution centered on zero with variance
equal to 1 (this is a unit information prior, which carries a weight
equivalent to approximately one observation; Rouder, Speckman,
Sun, Morey, & Iverson, 2009).

Other analysts could reasonably choose different prior distri-
butions when assessing these data, and it is possible they would

come to different conclusions. For example, in the case of a replica-
tion study specifically, a reasonable choice for the prior distribution
of HA is the posterior distribution of the originally reported effects
(Verhagen & Wagenmakers, 2014). Using the original study’s
posterior as the replication’s prior asks the question, “Does the
result from the replication study fit better with predictions made
by a null effect or by the originally reported effect?” A prior such
as this would lend itself to more extreme values of the Bayes fac-
tor because the two hypotheses make very different predictions;
the null hypothesis predicts replication effect sizes close to zero,
whereas the original studies’ posterior distributions will typically be
centered on relatively large effect sizes and hence predict large
replication effect sizes. As such, Bayes factors for replications that
find small-to-medium effect sizes will often favor H0 (δ=0) over
the alternative model that uses the sequential prior because the
replication result poorly fits the predictions made by the original
posterior distribution, whereas small-to-medium effects will yield
less forceful evidence in favor of H0 over the alternative model
using the unit information prior that we apply in this analysis.

There are two main reasons why, in the present paper, we
choose to use the unit information prior over this sequential prior.
First, our goal is not to evaluate how well empirical results repro-
duce, but rather to see how the amount of evidence gathered in an
original study compares to that found in an independent replication
attempt. This question is uniquely addressed by computing Bayes
factors on two data sets, using identical priors. Compared to the
sequential prior, the unit information prior we have chosen for our
analysis is somewhat conservative, meaning that it requires more
evidence before strongly favoringH0 in a replication study. Indeed,
results presented in a blog post by the first author (Etz, 2015)
suggest that when a sequential prior is used approximately 20%
of replications show strong evidence favoring H0, as opposed to
no replications strongly favoring H0 with the unit information prior
used in this report. Of course, it is to be expected that different
analysts obtain different answers with different priors, because
they are asking different questions (as Sir Harold Jeffries, 1939,
famously quipped: “It is sometimes considered a paradox that the
answer depends not only on the observations but on the question;
it should be a platitude,” p. vi).

A second reason we do not use the sequential prior in this re-
port is that it does not take into account publication bias. Assuming
that publication bias has a greater effect on the original studies
than it did on the (pre-registered, certain to be published regardless
of outcome) replications, the observed effect sizes in original and
replicate studies are not expected to be equal. Using the original
posterior distribution as a prior in the replication study would pe-
nalize bias in the original result; since the replication attempts will
nearly always show smaller effect sizes than the biased originals, it
will be more common to ‘fail to replicate’ these original findings (by
accumulating evidence in favor of H0 in the replication). However,
here we are interested in evaluating the evidential support for the
effects in the replication, rather than using them to quantify the
effect of publication bias. In other words, we are interested in
answering the following question: If we treat the two results as
independent, do they provide similar degrees of evidence?

Interpretation of the Bayes factor. The Bayes factor is most con-
veniently interpreted as the degree to which the data sway our
belief from one to the other hypothesis. In a typical situation, as-
suming that the reader has no reason to prefer the null hypothesis
over the alternative before the study (i.e., 1:1 odds, or both have
a prior probability of .50), a Bayes factor of 3 in favor of the alter-
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Table 1. Descriptive labels for certain Bayes factors.

Label B p(HA|data)a

Strongly supportHA 10 91%
Weakly supportHA 3 75%
Ambiguous information 1 50%
Weakly supportH0 1/3 25%
Strongly supportH0 1/10 9%
a: p(HA|data) is the posterior probability ofHA assuming prior equiprob-
ability betweenH0 andHA.

native will change their odds to 3 : 1 or a posterior probability of
.75 for HA. Since a Bayes factor of 3 would carry a reader from
equipoise only to a 75% confidence level, we take this value to
represent only weak evidence. Put another way, accepting a 75%
posterior probability for HA means that the reader would accept a
one-in-four chance of being wrong. To put that in a context: that is
the probability of correctly guessing the suit of a randomly-drawn
card; and the researcher would reasonably prefer to bet on being
wrong than on a fair die coming up six. That is to say, it is evidence
that would not even be convincing to an uninvested reader, let
alone a skeptic (who might hold, say, 10:1 prior odds against HA).
Table 1 provides posterior probabilities associated with certain
Bayes factors B assuming prior odds of 1 : 1. In that table, we
have also added some descriptive labels for Bayes factors of these
magnitudes (these labels are similar in spirit to those suggested
by Jeffreys, 1939). Finally, it bears pointing out that if a researcher
wants to move the probability of H0 from 50% to below 5%, a
Bayes factor of at least 19 is needed.

It is important to keep in mind that the Bayes factor as a mea-
sure of evidence must always be interpreted in the light of the
substantive issue at hand: For extraordinary claims, we may rea-
sonably require more evidence, while for certain situations—when
data collection is very hard or the stakes are low—we may satisfy
ourselves with smaller amounts of evidence. For our purposes,
we will only consider Bayes factors of 10 or more as evidential—a
value that would take an uninvested reader from equipoise to a
91% confidence level (a level at which an unbiased, rational reader
is willing to bet up to ten cents on HA to win back one cent if
they are right). Since the Bayes factor represents the evidence
from the sample, readers can take these Bayes factors and com-
bine them with their own personal prior odds to come to their own
conclusions.

Mitigation of publication bias. The academic literature is unfor-
tunately biased. Since studies in which the null hypothesis is
confidently rejected are published at a higher rate than those in
which it is not, the literature is “unrepresentative of scientists’ re-
peated samplings of the real world” (Young, Ioannidis, & Al-Ubaydli,
2008). A retrospective analysis of published studies must therefore
take into account the fact that these studies are somewhat excep-
tional in having passed the so-called statistical significance filter
(Ioannidis, 2008).

Guan and Vandekerckhove (2016) define four censoring func-
tions that serve as models of the publication process. Each of
these censoring functions formalizes a statistical significance filter,
and each implies a particular expected distribution of test statistics
that make it to the literature. The first, a no-bias model, where
significant and non-significant results are published with equal
probability, implies the typical central and non-central t distribu-
tions (for null and non-null effects, respectively). The second, an
extreme-bias model, indexes a process where non-significant re-

−5 0 5
0

0.2

0.4

No bias

−5 0 5
0

0.2

0.4

−5 0 5
0

0.5

1

Extreme bias

−5 0 5
0

0.5

1

1.5

−5 0 5
0

0.2

0.4

Constant bias

−5 0 5
0

0.5

1

−5 0 5
0

0.2

0.4

0.6

0.8

Exponential bias

−5 0 5
0

0.5

1

Fig. 1. Predicted distributions of t statistics in the literature. Predicted distribu-
tions are shown under the four censoring mechanisms we consider (columns) and two
possible states of nature (top row: H0 true (δ = 0); bottom row: H0 false (δ 6= 0)).

sults are never published. This model assigns nonzero density
only to regions where significant results occur (i.e., p < .05) and
nowhere else. The third, a constant-bias model, indexes a process
where non-significant results are published at a rate that is some
constant π (0 ≤ π ≤ 1) times the rate at which significant results
are published. These distributions look like typical t distributions
but with the central (non-significant) region weighted down, creat-
ing large spikes in density over critical regions in the t-distribution.
The fourth, an exponential-bias model, indexes a process where
the probability that non-significant results are published decreases
exponentially as (p − α) increases (i.e., “marginally significant”
results have a moderately high chance of being published). These
distributions have spikes in density around critical t-values. Fig. 1
shows the predicted distribution of published t values under each
of the four possible censoring functions, with and without a true
effect.

None of these censoring functions are likely to capture the
exact nature of the publication process in all of the cases we
consider, but we believe they span a reasonable range of possible
processes. Assuming that these four models reasonably represent
possible statistical significance filters, we can use a Bayesian
model averaging method to compute a single mitigated Bayes
factor (BM ) that takes into account that a biased process may
have led to the published effect. The procedure essentially serves
to raise the evidentiary bar for published studies if publication bias
was not somehow prevented (e.g., through pre-registration). A
unique feature of this method (compared to other bias mitigation
methods such as PET-PEESE; Stanley & Doucouliagos, 2014) is
that it allows us to quantify mitigated evidence for or against the
null hypothesis on a continuous scale—a feature that will become
useful when we compare original and replicated studies, below.

Calculation of the mitigated Bayes factor. To calculate BM , we
first define a likelihood function in which the t distribution is multi-
plied by a weighting function w, so that

p+
w (x|n, δ, θ) ∝ tn (x|δ)w (x|θ) . [1]

Here, x is the reported t-value, n stands for the associated degrees
of freedom, δ is the effect size parameter of the noncentral t
distribution, and w is one of the four censoring functions which has
optional parameters θ (see Table 2 for details regarding weighting
functions).

Equation 1 describes four possible models, each with some ef-
fect size δ. Together, these four models form the alternative hypoth-
esis HA. We construct four additional models in which δ = 0 (i.e.,
there is no underlying effect): p−w (x|n, θ) = p+

w (x|n, δ = 0, θ).
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Here the t distribution reduces to the central t, and these four
models together form the null hypothesis H0.

Second, we obtain the Bayesian evidences E+
w and E−w by

integrating the likelihood for each model over the prior:

E+
w =

∫
Θ

∫
∆
p+

w (x|n, δ, θ) p(δ)p(θ)dδdθ

E−w =
∫

Θ
p−w (x|n, θ) p(θ)dθ.

E+
w and E−w are also known as the marginal likelihoods of these

models (i.e., the probability density of the data under the model,
as a prior-weighted average over all possible parameter constella-
tions), and they can be conveniently approximated with Gaussian
quadrature methods (Abramowitz, Stegun, et al., 1972).

Finally, the posterior probability of each hypothesis can be cal-
culated by (1) multiplying each evidence value with the correspond-
ing model prior (where a ‘model’ is any one of the eight possible
combinations of weighting function w and the null or alternative
hypothesis; see Fig. 1); (2) dividing each of those products with
the sum of all such products for all models; and (3) summing the
posterior probabilities for all models within an hypothesis. This can
be rearranged to yield the following expression for the posterior:

Pr (HA|x) =
Pr (HA)×

∑
w
Pr (w)E+

w∑
k
Pr (k)

[
Pr (HA)E+

k + Pr (H0)E−k
] ,

where Pr (w) is the prior probability of censoring function w and
Pr (HA) is the prior probability that there is a nonzero effect. To
obtain the Bayes factor, we restate in terms of posterior and prior
ratios to obtain the simple expression:

Pr (HA|x)
Pr (H0|x)︸ ︷︷ ︸
Posterior odds

= Pr (HA)
Pr (H0)︸ ︷︷ ︸
Prior odds

×
∑

w
Pr(w)E+

w∑
w
Pr(w)E−w︸ ︷︷ ︸

Mitigated Bayes factor

,

where the second factor on the right hand side now represents the
mitigated Bayes factor BM . Full details and MATLAB/Octave code
to implement the procedure can be found here: http://bit.ly/
1Nph9xQ.

Sample. We limited our analysis to studies that relied on univariate
tests in order to apply the statistical mitigation method developed
by Guan and Vandekerckhove (2016). A total of N = 72 studies
were eligible. This includes all studies that relied on t-tests, uni-
variate F -tests, and univariate regression analyses. This limits the
generality of our conclusions to these cases, which fortunately con-
stitute the bulk of studies in the Reproducibility Project: Psychology.
A list of included studies and their inferential statistics is provided
in the Supporting Information. Additionally, we conducted a sen-
sitivity analysis varying the scale of the prior distribution among

Table 2. The four weighting functions.

Model Weight w if p > .05 Parameters θ
No bias w(x) = 1 None
Extreme bias w(x) = 0 None
Constant bias w(x|π) = π π

Exponential bias w(x|λ) = e(−λ(p−.05)) λ

Note: w(x) is always 1 for results that are statistically significant at the
.05-level. The dependency on the design and data properties that deter-
mine statistical significance is implied.

reasonable values (.5 to 2.0); this revealed no concerns that affect
the conclusions or recommendations of the present analysis.

Results

Evidence in the original studies, taken at face value. For the
original studies, we first computed “face value” Bayes factors that
do not take into account the possibility of a biased publication
process. By this measure, we find that 31 of the original studies
(43%) provide strong support for the alternative hypothesis (B ≥
10). No studies provide strong evidence for the null hypothesis.
The remaining 57% provide only weak evidence one way or the
other.

The small degrees of evidence provided by these published re-
ports, taken at face value, are consistent with observations by
Wetzels et al. (2011) as well as the cautionary messages by
Johnson (2013) and Maxwell, Lau, and Howard (2015).

Evidence in the original studies, corrected for publication
bias. When we apply the statistical mitigation method of Guan
and Vandekerckhove (2016), the evidence for effects generally
shrinks. After correction for publication bias, only 19 (26%) of
the original publications afford strong support for the alternative
hypothesis (BM ≥ 10). A sizable majority of studies (53, or 74%)
provide only ambiguous or weak information, with none finding
strong evidence in favor of the null.

Evidence in the replication studies. The set of replication stud-
ies was entirely preregistered, with all data sets fully in the open
and no opportunity for publication bias to muddy the results. Hence,
no mitigation of bias is called for. Of the 72 replication studies,
15 (21%) strongly support the alternative hypothesis (BR ≥ 10)
and none strongly support the null. Twenty-seven (38%) provide
only ambiguous information, and another 25 (35%) provide weak
evidence for the null hypothesis.

Consistency of results. One of the stated goals of the Repro-
ducibility Project: Psychology was to test whether previously found
effects would obtain in an identical replication of a published study.
Focusing on Bayesian evidence, we can now evaluate whether
similar studies support similar conclusions. In 46 cases (64%),
neither the original study nor the replication attempt yielded strong
evidence (i.e., B ≥ 10). In only 8 cases (11%) did both the original
study and the replication strongly support the alternative hypothe-
sis. In 11 cases (15%) the original study strongly supported the
alternative but the replication did not, and in 7 cases (10%) the
replication provided strong evidence for the alternative whereas the
original did not. The frequencies of these Bayes factor transitions
are given in Table 3.

Fig. 2 shows (in logarithmic coordinates) the Bayes factor of the
replication BR plotted against the bias-corrected Bayes factor of
the original result BM . The majority of cases in which neither the
original nor the replication provided strong evidence are displayed
as the cluster of small crosses in the lower left of the figure. Circles
represent cases where at least one of the attempts yielded strong
evidence.

The observation that there are only 8 cases where both original
and replication find strong evidence for an effect, while there are
18 cases in which one does and the other does not, seems at
first to indicate a large degree of inconsistency between pairs of
otherwise similar studies. To explain this inconsistency, Fig. 2
highlights a major difference between each original and replication:
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Table 3. Consistency of Bayes factors across original and replicate
studies. Columns indicate the magnitude of the mitigated Bayes fac-
tor from the original study, and rows indicate the magnitude of the
Bayes factor obtained in the replication project.

Mitigated Bayes factor (original study)

0
−

1 /
10

1 /
10
−

1 /
3

1 /
3
−

3

3
−

10

10
−
∞

sum

Replication 0 − 1/10 0 0 0 0 0 0
study 1/10 − 1/3 0 0 18 4 3 25

“face-value” 1/3 − 3 0 0 16 4 7 27
Bayes 3 − 10 0 0 3 1 1 5
factor 10 −∞ 0 1 6 0 8 15

sum 0 1 43 9 19 72

The chosen sample size. The size of the circles indicates the ratio
of the replication sample size to the original sample size. In each
of the 11 cases where the original study supported the alternative
but the replication did not, the original study had the larger sample
size. In each of the 7 cases where the replication provided strong
evidence for the alternative but the original did not, it was the
replication that had the larger sample size.

Discussion

Small sample sizes and underpowered studies are endemic in psy-
chological science. Publication bias is the law of the land. These
two weaknesses of our field have conspired to create a literature
that is rife with false alarms (Ioannidis, 2005). From a Bayesian
reanalysis of the Reproducibility Project: Psychology, we conclude
that one reason many published effects fail to replicate appears to
be that the evidence for their existence was unacceptably weak in
the first place.

Crucially, our analysis revealed no obvious inconsistencies be-
tween the original and replication results. In no case was an
hypothesis strongly supported by the data of one team but con-
tradicted by the data of another. In fact, in 75% of cases the
replication study found qualitatively similar levels of evidence to the
original study, after taking into account the possibility of publication
bias. In many cases, one or both teams provided only weak or am-
biguous evidence, and whenever it occurred that one team found
strong evidence and the other did not, this was easily explained by
(sometimes large) differences in sample size. The apparent dis-
crepancy between the original set of results and the outcome of the
Reproducibility Project can be adequately explained by the combi-
nation of deleterious publication practices and weak standards of
evidence, without recourse to hypothetical hidden moderators.

The Reproducibility Project: Psychology is a monumental effort
whose preliminary results are already transforming the field. We
conclude with the simple recommendation that, whenever possi-
ble, empirical investigations in psychology should increase their
planned replication sample sizes beyond what is implied by power
analyses based on effect sizes in the literature. Our analysis in
that sense echoes that of Fraley and Vazire (2014).

Decades of reliance on orthodox statistical inference—which is
known to overstate the evidence against a null hypothesis (Berger
& Delampady, 1987; Berger & Sellke, 1987; Edwards, Lindman, &
Savage, 1963; Goodman, 2008)—have obfuscated the widespread
problem of small samples in psychological studies in general and
in replication studies specifically. While 92% of the original stud-
ies reached the statistical significance threshold (p < .05), only
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Fig. 2. Evidence resulting from replicated studies plotted against evidence
resulting from the original publications. For the original publications, evidence
for the alternative hypothesis was calculated taking into account the possibility of
publication bias. Small crosses indicate cases where neither the replication nor
the original gave strong evidence. Circles indicate cases where one or the other
gave strong evidence, with the size of each circle proportional to the ratio of the
replication sample size to the original sample size (a reference circle appears in the
lower right). The area labeled ‘replication uninformative’ contains cases where the
original provided strong evidence but the replication did not, and the area labeled
‘original uninformative’ contains cases where the reverse was true. Two studies that
fell beyond the limits of the figure in the top right area (i.e., that yielded extremely
large Bayes factors both times) and two that fell above the top left area (i.e., large
Bayes factors in the replication only) are not shown. The effect that relative sample
size has on Bayes factor pairs is shown by the systematic size difference of circles
going from the bottom right to the top left. All values in this figure can be found in the
Appendix.

43% met our criteria for strong evidence, with that number shrink-
ing further to 26% when we took publication bias into account.
Furthermore, publication bias inflates published effect sizes. If
this inflationary bias is ignored in prospective power calculations
then replication attempts will systematically tend to be underpow-
ered, and subsequently will systematically obtain only weak or
ambiguous evidence. This appears to have been the case in the
Reproducibility Project: Psychology.

A major selling point of Bayesian statistical methods is that
sample sizes need not be determined in advance (Rouder,
2014), which allows analysts to monitor the incoming data and
stop data collection when the results are deemed adequately
informative; see (Wagenmakers, Wetzels, Borsboom, van der
Maas, & Kievit, 2012) for more detail and see (Matzke et al., 2015)
for an implementation of this kind of sampling plan, and also see
(Schönbrodt, Wagenmakers, Zehetleitner, & Perugini, in press)
for a detailed step-by-step guide and discussion of this design.
Subsequently, if the planned sample size is reached and the
results remain uninformative, more data can be collected or else
researchers can stop and simply acknowledge the ambiguity in
their results. Free and easy-to-use software now exists that allows
this brand of sequential analysis (e.g., JASP; Love et al., 2015).

This is the first of several retrospective analyses of the Reproducibil-
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ity Project data. We have focused on a subset of the reproduced
studies that are based on univariate tests in order to account for
publication bias. Other retrospectives include those that focus on
Bayes factors and Bayesian effect size estimates (Marsman et al.,
2015).
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S1 Table. Inferential statistics for each of the 72 studies and their replication attempts.

Relevant statistics for each of the 72 included studies. Note that Bayes factors are presented on the log10 scale, so positive values favor HA and negative values favor H0;
| log10(BF )| > 1 indicate strong evidence favoring the respective hypothesis.

study original replicate log10 Bayes factor
number df t-value df t-value original mitigated replicate

1 13 2.6665 28 0.7937 0.6441 0.1108 -0.3291
2 23 3.7027 23 1.1314 1.5810 0.8406 -0.1752
3 24 2.3000 31 1.2272 0.4905 -0.0513 -0.1799
4 190 3.2388 268 0.1000 1.3270 0.5640 -0.8735
5 31 2.8948 47 0.9327 0.9802 0.3126 -0.3767
6 23 3.5500 31 2.4000 1.4556 0.7298 0.5672
7 99 10.1800 14 0.4960 13.9830 13.1400 -0.2826
8 37 4.1267 31 0.6197 2.2564 1.4573 -0.3953
10 28 5.1662 29 6.7283 3.0554 2.2314 4.5391
11 21 4.1593 29 2.8397 1.8813 1.1144 0.9241
15 94 1.9290 241 3.9550 0.0730 -0.1539 2.3326
19 31 3.7683 19 1.9134 1.7949 1.0271 0.2423
20 94 2.2294 106 0.2000 0.3236 -0.2641 -0.7108
24 152 4.8141 48 2.0543 3.7866 2.9503 0.2679
26 94 1.5811 92 1.3964 -0.1753 -0.3290 -0.2842
27 31 2.2738 70 3.4326 0.4696 -0.0854 1.6253
28 31 2.0248 90 0.9849 0.2879 0.0638 -0.4829
29 7 2.8920 14 3.7080 0.5192 0.0899 1.2588
32 36 4.7833 37 3.3347 2.9577 2.1352 1.4245
33 39 3.7700 39 2.0800 1.8938 1.1147 0.3089
36 20 4.5596 20 4.1653 2.1323 1.3475 1.8434
37 11 2.1909 17 1.5395 0.3697 0.1730 0.0476
44 67 3.0800 176 2.0160 1.2134 0.4831 0.0398
48 92 -2.2200 192 -0.7255 0.3186 -0.2666 -0.7393
49 34 2.3833 86 0.2828 0.5528 -0.0301 -0.6593
52 131 2.4062 111 0.9950 0.4373 -0.1962 -0.5215
53 31 2.2672 73 0.6573 0.4646 -0.0891 -0.5524
56 99 4.0768 38 -0.2600 2.5232 1.7072 -0.4970
58 182 2.2891 278 0.6132 0.2790 -0.3413 -0.8382
61 108 -2.3400 220 0.0700 0.4038 -0.2116 -0.8509
63 68 2.3495 145 0.8911 0.4744 -0.1317 -0.6207
65 41 3.0659 131 0.1342 1.1730 0.4637 -0.7584
68 116 2.0372 222 0.0447 0.1246 -0.4201 -0.8525
71 373 4.4000 175 0.9730 2.9768 2.1537 -0.6328
72 257 3.4029 247 0.7000 1.5031 0.7229 -0.8005
81 90 2.6420 137 1.1958 0.7253 0.0539 -0.4730

study original replicate log10 Bayes factor
number df t-value df t-value original mitigated replicate

87 51 3.0757 47 0.0894 1.2009 0.4805 -0.5511
89 26 0.7200 26 0.1500 -0.3374 -0.3756 -0.4331
93 83 3.0500 68 -1.1240 1.1752 0.4430 -0.3673
94 26 1.8700 59 2.3250 0.1981 0.0087 0.4679
97 73 3.4914 1486 1.4248 1.7004 0.9244 -0.9051
106 34 2.4083 45 1.5340 0.5730 -0.0149 -0.0775
107 84 2.0900 156 1.3180 0.2209 -0.3317 -0.4358
110 278 11.1077 142 1.0909 20.9560 20.1120 -0.5321
111 55 2.6230 116 2.4960 0.7462 0.0937 0.5443
112 9 2.9496 9 3.4059 0.6473 0.1493 0.8169
113 124 10.3600 175 15.6400 15.4490 14.6050 31.4220
114 30 3.8066 30 4.7191 1.8159 1.0472 2.7092
115 31 3.2300 8 -1.4260 1.2825 0.5684 0.0489
116 172 3.9400 139 4.0200 2.3526 1.5385 2.4698
118 111 2.3046 158 0.6156 0.3665 -0.2416 -0.7251
120 29 2.2123 41 1.6533 0.4258 -0.1123 0.0091
122 7 2.7600 16 -9.5900 0.4803 0.0636 3.8735
124 34 2.4269 68 0.2828 0.5880 -0.0035 -0.6110
127 28 4.9800 25 -3.1030 2.8817 2.0618 1.1170
129 26 2.0421 64 0.1414 0.3105 0.0892 -0.6110
133 23 2.3875 37 2.8425 0.5513 -0.0038 0.9505
134 115 2.3030 234 8.8360 0.3596 -0.2489 13.5090
135 562 -0.1100 3511 -6.3100 -0.9042 -0.9044 5.8207
136 28 3.0400 56 -0.7700 1.0900 0.4085 -0.4664
145 76 10.4757 36 5.1730 13.1250 12.2820 3.3895
146 14 3.2000 11 1.9000 0.9709 0.3512 0.2339
148 194 2.6758 259 0.4858 0.6592 -0.0370 -0.8442
149 194 2.6758 314 0.3240 0.6592 -0.0370 -0.8799
150 13 3.7683 18 0.9000 1.2348 0.5677 -0.2222
151 41 2.7946 124 0.0316 0.9115 0.2428 -0.7509
153 7 4.4500 7 0.3200 0.8838 0.3464 -0.2037
154 68 3.9275 14 0.4141 2.2479 1.4437 -0.2958
155 51 2.3286 70 0.2846 0.4848 -0.1069 -0.6167
158 38 2.4920 93 4.3520 0.6405 0.0299 2.9206
161 44 3.6633 44 1.1987 1.8164 1.0407 -0.2521
167 17 3.0545 21 1.2042 0.9613 0.3306 -0.1315
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