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Abstract

In optimal stopping problems, people are asked to choose the
maximum out of a sequence of values, under the constraint
that a number can only be chosen when it is presented. We
present a series of threshold models of human decision mak-
ing on optimal stopping problems, including a new hierarchical
model that assumes individual differences in threshold setting
are controlled by deviations or biases from optimality associ-
ated with risk propensity, and is applicable to optimal stopping
problems of any length. Using Bayesian graphical modeling
methods, we apply the models to previous data involving 101
participants with large individual differences who completed
sets of length 5 and length 10 problems. Our results demon-
strate the effectiveness of the bias-from-optimal hierarchical
model, find individual differences in thresholds that people
use, but also find that these individual differences are stable
across the two optimal stopping tasks.
Keywords: optimal stopping; secretary problem; sequen-
tial decision-making; threshold models; hierarchical Bayesian
modeling

Introduction
The optimal stopping problem, also known as the secretary
problem, is a decision-making task in which people must
choose the highest value out of a sequence of numbers, un-
der the constraint that a number can only be chosen when it is
presented (Ferguson, 1989; Gilbert & Mosteller, 1966). Op-
timal stopping problems are interesting for understanding hu-
man decision making because they have two features found
in many real-world decision-making settings. The first fea-
ture is that there is no going back. Oftentimes, it is difficult
or even impossible to decline an earlier option and then re-
turn to it later. For example, in searching for jobs, it is almost
impossible to come back to a job offer that you have already
rejected. The second feature is that only the best will do. In
some real-world situations, there is only one best option and
any other option is completely and equally useless. For ex-
ample, trying to find the correct key out of a set to open the
door to your house will only result in success if you find the
lone correct house key.

In the cognitive sciences, people’s decision making on a
number of different versions of optimal stopping problems
have been studied. One is the classic rank order version,
in which only the rank of the current option relative to the
options already seen is presented (e.g., Seale & Rapoport,
1997, 2000). We focus on the alternative full-information
version of the task, in which people are presented with the ac-
tual continuously-scaled values of the alternatives (e.g., Lee,
2006). In the full information optimal stopping problem, the

known optimal solution is to choose the first value that is
both currently maximal and above a certain mathematically
derived threshold for the current position in the sequence
(Gilbert & Mosteller, 1966, Table 2).

Our previous work (e.g., Guan & Lee, 2014; Lee, 2006)
found evidence that people use a series of thresholds to make
decisions, and that there are large individual differences in
thresholds, with many people using suboptimal thresholds.
In this paper, we examine decision making on two optimal
stopping tasks with different lengths. In one task, people
must choose the maximum out of 5 numbers, and in the other
they must choose the maximum out of 10 numbers. If there
are psychological components that determine the thresholds
in which people use, such as risk propensity or intelligence,
then we should expect behavior to be similar between the two
tasks. For instance, participants who use thresholds higher
than optimal in the length 5 task should also use thresholds
higher than optimal in the length 10 task. A recruiter who is
generally picky and willing to hold out until the perfect candi-
date comes along will have relatively high thresholds for job
applicants whether they are choosing from 5 applicants or 10.

Our goal is to develop a hierarchical threshold model for
the optimal stopping problem that can account for the devi-
ation or bias from optimality in terms of psychological vari-
ables, and be applicable to optimal stopping problems of any
length. In the following section, we describe the experiment
and the data set we use. Next, we present a series of threshold
models leading up to a hierarchical psychological threshold
model that is applied jointly to tasks of different lengths. We
then present the results from using Bayesian methods to ap-
ply these threshold models to the behavioral data, and discuss
the implications of the results.

Burns, Lee, and Vickers (2006) Data
The optimal stopping data set we use is a subset of a larger
data set taken from Burns et al. (2006), which includes data
from various cognitive and perceptual optimization problems,
as well as various standard psychometric tests of intelligence.
The original data set includes a total of 101 participants re-
cruited from the general community, with within-participants
data for the set of cognitive, perceptual, and psychometric
tasks. We use just the two optimal stopping tasks, which in-
volved 40 problems of length 5 and 40 problems of length
10.

Each participant completed the two sets of optimal stop-
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Figure 1: Conceptual overview of the threshold model, bias-from-optimal model independently applied, and bias-from-optimal
model jointly applied to the optimal stopping data for problems of length 5 and length 10.

ping problems through a computer interface. All participants
completed the length 5 set first, followed by the length 10 set,
and completed the same 40 problems within each set. The or-
der of problems within each set was randomized across par-
ticipants.

Participants were instructed to pick the highest value out
of a set of dollar amounts that ranged from 0 to 100. They
were told (1) the length of the sequence, (2) that the dollar
amounts were uniformly and randomly distributed, (3) that a
value could only be chosen when it is presented, (4) that any
value that is not the maximum is completely and equally in-
correct as the others, and (5) that the last value must be cho-
sen if no values were chosen in all previous positions. Par-
ticipants indicated whether or not they chose each presented
value by pressing either a “yes” or “no” button. After each
problem, participants were provided with feedback on their
response.

We removed 3 contaminant participants from the length 5
task, and 7 participants from the length 10 task, because they
choose values that were not currently maximal on more than
10% of the problems (excepting the final value, which is a
forced choice).

Overview of Models
Previous work suggests that people use threshold-based rules
to make decisions in optimal stopping problems (e.g., Guan
& Lee, 2014; Lee, 2006). In this section, we develop a set
of three threshold models that start with the simple threshold
model we have used previously, but then extend the model
hierarchically to add cognitive processes and parameters ac-
counting for how the thresholds themselves are generated.
This theoretical progress is summarized in Figure 1, using
a schematic form of graphical model representation.

The first threshold model consists of a set of independent
thresholds, which are assumed to generate the data by a sim-
ple choice model that selects with high probability the first
presented value that is above the threshold, and currently
maximal. The hierarchical “bias-from-optimal” model gen-
erates thresholds based on latent psychological parameters,
representing biases of deviations from suboptimality each in-
dividual has. In the bias-from-optimal independent model,
we apply this model independently to both the length 5 and
length 10 data. In the final bias-from-optimal joint model,
however, we apply make the assumption that individual-level
bias is the same for both length problems, and apply the
model simultaneously to both sets of problems.

Threshold Model
The threshold model has independent threshold parameters
τm

i1, ...,τ
m
i(m−1) for the ith participant in each of the first m−1

positions. Since the last value in a sequence must be chosen,
the threshold τm

im for that position is always 0. These threshold
parameters are unconstrained, with the same uniform prior
probability on the subspace of

(
0,1
)m−1. According to the

threshold choice model, the probability the ith participant will
choose the value they are presented in the kth position on their
jth problem is

θ
m
i jk =

{
αm

i if vm
i jk >τm

ik & vm
i jk =max

{
vm

i j1, . . . ,v
m
i jk

}

1−αm
i

m otherwise

for the first four positions and θm
i jm = 1−∑

m−1
k=1 θm

i jk for the last
position, where αm

i ∼ Uniform
(
0,1
)

is the individual-level
“accuracy of execution” parameter that describes how often
the deterministic threshold model is followed (Guan & Lee,
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Figure 2: The behavior of the bias-from-optimal threshold
model under different parameterizations.

2014). The threshold model is completed by the observed
data being distributed according to the choice probabilities,
so that

ym
i j ∼ Categorical

(
θ

m
i j1, . . . ,θ

m
i j5
)
.

Bias-From-Optimal Independent Model
In the threshold model, the thresholds are free parameters and
can consequently take any shape across positions. The bias-
from-optimal model constrains the relationship between the
thresholds by modeling each participant’s thresholds in terms
of how they deviate from optimality.

We denote the optimal thresholds as τ̃1, . . . , τ̃m for a prob-
lem of length m (Gilbert & Mosteller, 1966, Table 2).
The ith participant’s thresholds now depend on a parameter
βm

i ∼ Gaussian
(
0,1
)

that determines how far above or be-
low their threshold is from optimal, and a parameter γm

i ∼
Gaussian

(
0,1
)

that determines how much their bias increases
or decreases as the sequence progresses. Formally, the ith
participant’s thresholds for a problem of length m is

τ
m
ik = Φ

(
Φ

−1(τ̃m
k )+β

m
i +

k
m

γ
m
i
)

for the first m−1 positions, and τm
im = 0 for the last. The link

functions Φ and Φ−1 are the Gaussian CDF and inverse CDF,
respectively. The remainder of the bias-from-optimal model
is identical to the threshold model, completed by the choice
probabilities θm

i jk determined by the ith participant’s accuracy
of execution αm

i for a task of length m, and the problem val-
ues.

Figure 2 shows how the shape of threshold functions
changes with different values of β and γ. The optimal thresh-
old corresponds to the case with β= 0 and γ= 0, and is shown
in bold. The β parameter represents a shifting bias from
this optimal curve, with positive values resulting in thresh-
olds that are above optimal, and negative values resulting in
thresholds that are below optimal. The γ parameter represents

how quickly thresholds are reduced throughout the problem
sequence, relative to the optimal rate of reduction. Positive
values of γ produce thresholds that drop too slowly, while
negative values of γ produce thresholds that drop too quickly.

The middle panel of Figure 1 provides an overview of the
bias-from-optimal model. The βi and γi parameters now gen-
erate the thresholds τττm

i that the participant uses, and the same
threshold choice process is then assume to generate the ob-
served behavioral data.

Bias-From-Optimal Joint Model
The bias-from-optimal model generates thresholds for prob-
lems of any length based on the β and γ parameters. This
means it can be applied jointly to both the length 5 and length
10 tasks in our data set. The right panel in Figure 1 shows the
hierarchical graphical model that achieves this simultaneous
application. There are now single βi and γi parameters for
the ith participant that generate predictions about decisions
on both tasks

We implemented all of our models as graphical models us-
ing JAGS (Plummer, 2003), to facilitate MCMC-based com-
putational Bayesian inference (Lee & Wagenmakers, 2013).
Figure 3 shows this final bias-from-optimal joint model in the
graphical modeling formalism. The latent parameters cor-
responding to the thresholds τττm

i and accuracy of execution
αm

i are represented by unshaded and circular nodes, since
they are unobserved and continuous. The values vvvm

j pre-
sented on the jth problem, standardized to lie between 0 and
1, instead of the 0 to 100 scale used in the experiment, are
shown as a shaded node, since they are observed and continu-
ous. Together, the parameters and problem values determine
the probabilities θθθ

m
i j for each possible decision, shown as a

double-bordered node since it is a deterministic function of
its parents in the graphical model. The decision ym

i j is shown
as a shaded and square node, since it is observed and discrete.
Encompassing plates for participants and problems indicate
independent replications of the graph structure in the model.

Modeling Results
In this section, we apply all three models to all of the data
from both optimal stopping tasks. We first examine the de-
scriptive adequacy of each model, and the thresholds they in-
fer. We then present a generalization test of the joint model,
in which the data from one task are withheld. All of our mod-
eling results are based on four chains of 2000 samples each,
collected after 1000 discarded burn-in samples. The chains
were verified for convergence using the standard R̂ statistic
(Brooks & Gelman, 1997).

Descriptive Adequacy
We first measured the ability of the models to describe the be-
havioral data, using a standard Bayesian approach based on
posterior predictive checking (Gelman, Carlin, Stern, & Ru-
bin, 2004). Specifically, we measured the agreement between
each model’s modal posterior prediction and the observed
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Figure 3: Graphical model for the joint application of the bias-from-optimal threshold model to both length 5 and length 10
optimal stopping tasks.

decision for each participant on each problem. The poste-
rior predictive agreement for the threshold model is 87% and
89%, for the bias-from-optimal model applied independently
it is 86% and 84%, and for the bias-from-optimal model ap-
plied jointly it is 81% and 82%, for the length 5 and length
10 problems, respectively. Given that that the base-rate or
chance level of agreement are 20% and 10%, we conclude
all three models provide reasonable accounts of participants’
behavior.

Inferred Thresholds
Figure 4 shows the inferred thresholds, under all three mod-
els on both the length 5 and length 10 problems, for four rep-
resentative participants. These participants were chosen be-
cause they span the sorts of individual differences seen across
all participants in the data set.1 The third participant, for ex-
ample, has higher starting thresholds than the first participant,
but drops their threshold more quickly, consistent with a posi-
tive β and negative γ parameterization. The fourth participant
also has higher starting thresholds than the first participant but
barely drops their threshold as position increases, consistent
with positive β and γ.

Figure 4 shows close agreement between the inferred
thresholds for all three models, on both problem lengths, for
all four representative participants. The agreement between
the threshold and bias-from-optimal model indicates that the
cognitive model we developed is a useful one. The thresh-
old model is free to find whatever thresholds are likely given
the data. The bias-from-optimal model is simpler and more
constrained, yet infers very similar thresholds for all four rep-
resentative participants (and the vast majority of all partici-
pants) for both problem lengths. Given its ability to gener-
ate appropriate thresholds, the bias-from-optimal model has

1The results for all participants can be found at http://osf.io/
vga6n.

a number of important advantages. One is that it is param-
eterized in terms of psychologically interpretable deviations
from optimality, rather than simple thresholds. Another is
that its simplicity—coming from the stronger theoretical as-
sumptions it formalizes—means it requires fewer data to infer
thresholds. This advantage can be seen clearly in the inferred
thresholds for the length 10 problem for the second partici-
pant in Figure 4. Because this participant used relatively low
thresholds, they rarely progressed far in problems for that
task, and there are few decisions that inform the threshold
model for later positions in the sequence. As a result, the in-
ferences of the threshold model are much less constrained or
informed than for the bias-from-optimal model.

Figure 4 also shows close agreement between the bias-
from-optimal model applied independently and jointly to the
two tasks. This result suggests that the individual differences
across problem lengths are stable. That is, the same devia-
tions from optimality parameterized by β and γ generate ap-
propriate thresholds for a participant for both the length 5
and length 10 problems. This is clear in the representative
participants with, for example, the second participant using
thresholds that start low and decrease quickly for both prob-
lem lengths, while the fourth participant uses thresholds that
start high and decrease slowly

Individual Differences

Figure 5 summarizes the individual differences across all par-
ticipants, using the inferences of the bias-from-optimal model
applied jointly to both problem lengths. The posterior ex-
pected means of the β and γ for all participants are shown as a
scatterplot in the main panel, with their marginal distributions
shown as histograms. The dotted lines represent the no bias
values for both parameters, corresponding where they meet
to optimal thresholds. The range of individual differences is
apparent, with both β and γ varying from positive to negative
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Figure 4: Inferred thresholds for four representative participants for both length 5 and length 10 problems, based on the threshold
model, bias-from-optimal model applied independently, and bias-from optimal model applied jointly.

biases, and all four quadrants around optimality populated by
participants. There does appear to be, however, a relationship
between the two bias parameters, with negative values of β

often paired with positive values of γ, and vice versa. This
suggests that participants who bias their thresholds to be too
high also decrease them faster than is optimal. while partici-
pants who set their thresholds too low tend to decrease them
more slowly than is optimal.

Generalization Performance
In our jointly applied bias-from-optimal model, the β and γ

parameters are stable for the same person on problems of the
two different lengths. This means that observing behavior in
one task should allow the joint model to make useful predic-
tions about behavior in the other, at the level of individual
participants. To examine this possibility, we conducted two
generalization tests (?, ?). In the first, we withheld the deci-
sion data of all participants from the length 10 task. We then
used the observed decisions from the length 5 problem to pre-
dict the withheld length 10 problem decisions, based on the
mode of the posterior predictive distribution for each partic-
ipant on each problem. The overall proportion of agreement
was 69%, which can be compared to a random-choice base-
rate of 10%. In the second generalization test, we withheld
the decision data of all participants from the length 5 task and
used the observed decisions from the length 10 problem to
predict the withheld length 5 problem decisions. The overall
proportion of agreement was 74%, which can be compared
to the base-rate of 20%. We think both generalization tests
show impressive performance, and highlight the advantage of
hierarchical models that are able to make predictions about
tasks for which they have not observed data.

Discussion
Optimal stopping problems are interesting in that they have
two features often found in the real world: there is no going
back, and only the best will do. The full-information version
has a known optimal solution to which human performance

can be compared, providing a benchmark for the study of op-
timality and bias. In this study, we examined performance
on optimal stopping problems on two different length opti-
mal stopping problems. We developed a hierarchical cogni-
tive model that conceived of individuals generating thresholds
based on two sorts of biases or deviations from optimality.
The bias parameter β reflects how far above or below an indi-
vidual’s threshold strays from the optimal, the γ parameter re-
flects how slowly or quickly their threshold drops as position
in the sequence increases. We found that the thresholds gen-
erated by our bias-from-optimal model agreed closely with
the thresholds independently estimated in a non-hierarchical
way, suggesting it is a useful model of the cognitive process
of threshold generation. Moreover, the bias parameters were
stable across the two task, suggesting that there could be com-
mon latent psychological components that help determine the
thresholds people use. For example, we might expect that
higher risk propensity in individuals would be reflected in
greater deviation from the optimal threshold in our cognitive
model.

A natural advantage of this hierarchical approach is that it
becomes possible to apply the model simultaneously to op-
timal stopping problems of any length. The use of the same
latent variables to explain observations in multiple tasks is a
hallmark of good modeling throughout the empirical sciences
(Lee, 2011), but the hierarchical use of psychological vari-
ables to make simultaneous predictions about behavior in dif-
ferent tasks is not widely seen in the cognitive sciences (Lee
& Sarnecka, 2011; Vandekerckhove, 2014). Our demonstra-
tion of the stability of individual differences, and the ability
to make accurate generalization predictions, provides a good
example of how hierarchical models can be tested and applied
across multiple tasks.

Natural future directions would be to understand the ba-
sis of these individual differences in bias or risk, and relate
this measure to other psychometric measures of intelligence
or personality, as well as to other decision-making tasks that
involve decision making under uncertainty.
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