
 
 
 
 

 ARL-TR-9672 ● APR 2023 
  
 
 
 

 
 
 
A Methodology for Quantitative Measurement 
of Cyber Resilience (QMOCR) 
 
by Alexander Kott, Michael J Weisman,  
Joachim Vandekerckhove, Jason E Ellis, Travis W Parker,  
Brian J Murphy, and Sidney Smith  
 
 
 
 
 
 
 
 
Approved for public release: distribution unlimited. 



 

 

NOTICES 
 

Disclaimers 
 

The findings in this report are not to be construed as an official Department of the 
Army position unless so designated by other authorized documents. 

Citation of manufacturer’s or trade names does not constitute an official 
endorsement or approval of the use thereof. 

Destroy this report when it is no longer needed. Do not return it to the originator. 



 

 

 
 
 

 ARL-TR-9672 ● APR 2023 

 

 
 
A Methodology for Quantitative Measurement of 
Cyber Resilience (QMOCR) 
 
Alexander Kott, Michael J Weisman, Jason E Ellis, and Sidney Smith  
DEVCOM Army Research Laboratory 
 
Travis W Parker 
ICF International 
 
Joachim Vandekerckhove 
University of California, Irvine 
 
Brian J Murphy 
Pennsylvania State University 
 
 
 
 
 
 
 
 
 
 
Approved for public release: distribution unlimited.



 

ii 

REPORT DOCUMENTATION PAGE 

1. REPORT DATE 2. REPORT TYPE 3. DATES COVERED 
START DATE END DATE 

April 2023 Technical Report January 2021 March 2023 
4. TITLE AND SUBTITLE 

A Methodology for Quantitative Measurement of Cyber Resilience (QMOCR) 

5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 
   
5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 

   
6. AUTHOR(S) 

Alexander Kott, Michael J Weisman, Joachim Vandekerckhove, Jason E Ellis, Travis W Parker, Brian J Murphy, and Sidney Smith 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION 
REPORT NUMBER 

DEVCOM Army Research Laboratory 
ATTN: FCDD-RLD 
Adelphi, MD  20783 

ARL-TR-9672 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR'S 
ACRONYM(S) 

11. SPONSOR/MONITOR'S REPORT 
NUMBER(S) 

   

12. DISTRIBUTION/AVAILABILITY STATEMENT 
Approved for public release: distribution unlimited. 

13. SUPPLEMENTARY NOTES 
ORCID IDs: Alexander Kott, 0000-0003-1147-9726; Michael J Weisman, 0000-0003-4918-5571; Sidney Smith, 0000-0003-1398-307X 

14. ABSTRACT 
This report describes a methodology for measuring—quantitatively and experimentally—the cyber resilience of a system when subjected 
to a cyber attack. We use the term Quantitative Measurement of Cyber Resilience (QMOCR) to refer to this methodology. 
The methodology is an outcome of the eponymous research project performed by the US Army Combat Capabilities Development 
Command Army Research Laboratory during the period of April 2021 through March 2023 in collaboration with the Pennsylvania State 
University Applied Research Laboratory and the University of California, Irvine. Resilience continues to gain attention as a key property 
of cyber and cyber-physical systems, for the purposes of cyber defense. A key challenge in the field of cyber resilience is quantifying or 
measuring resilience. Developers and buyers of a system must be able to quantify the cyber resilience of the system they develop or 
purchase. We recommend application of the QMOCR methodology especially when an actual system, its prototype, or a working, 
executable model (physical, digital, or digital–physical) is available. 
15. SUBJECT TERMS 

Network, Cyber, and Computational Sciences; cyber resilience; cyber experimentation; resilience modeling; cyber-physical systems  

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT 18. NUMBER OF PAGES 

a. REPORT b. ABSTRACT C. THIS PAGE 
 

UU 36 UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED 
19a. NAME OF RESPONSIBLE PERSON 19b. PHONE NUMBER (Include area code) 

Alexander Kott (301) 394-1507  
STANDARD FORM 298 (REV. 5/2020) 

 Prescribed by ANSI Std. Z39.18 
  



 

iii 

Contents 

List of Figures iv 

Acknowledgments v 

1. Introduction 1 

2. Key Steps of the Methodology 2 

3. Detailed Discussion 3 

4. Conclusions and Recommendations 9 

5. References 11 

Appendix. Quantitative Measurement of Cyber Resilience: Modeling and 
Experimentation 12 

List of Symbols, Abbreviations, and Acronyms 27 

Distribution List 28



 

iv 

List of Figures 

Fig. 1 Computing the relative functionality .................................................... 7 
 

  



 

v 

Acknowledgments 

The authors would like to thank the Office of the Under Secretary of Defense 
Research and Engineering for funding the Quantitative Measurement of Cyber 
Resilience project. 



 

1 

1. Introduction 

This report describes a methodology for measuring—quantitatively and 
experimentally—the cyber resilience of a system when subjected to a cyber attack. 
We use the term Quantitative Measurement of Cyber Resilience (QMOCR) to refer 
to this methodology. 

The methodology is an outcome of the eponymous research project performed by 
the US Army Combat Capabilities Development Command (DEVCOM) Army 
Research Laboratory (ARL) during the period of April 2021 through March 2023 
in collaboration with the Pennsylvania State University Applied Research 
Laboratory and the University of California, Irvine.  

Resilience continues to gain attention as a key property of cyber and cyber-physical 
systems, for the purposes of cyber defense. Although definitions vary, it is generally 
agreed that cyber resilience refers to the ability of a system to resist and recover 
from a cyber compromise that degrades the business task-relevant performance of 
the system (Kott and Linkov 2019; Smith 2023). Resilience should not be conflated 
with security or risk management (Linkov et al. 2018). 

A key challenge in the field of cyber resilience is quantifying or measuring 
resilience. Indeed, no engineering discipline achieved significant maturity without 
being able to measure the properties of phenomena relevant to the discipline (Kott 
and Linkov 2021). Developers of a system must be able to quantify the cyber 
resilience of the system under development in order to know whether the features 
they introduce in the system improve its cyber resilience or make it worse. 
Similarly, buyers of the system need to know how to quantitatively specify and 
experimentally test the system’s cyber resilience in order to determine whether the 
product meets their specifications. 

Throughout our research and in this report, we use the term “measure” or 
“measurement” as opposed to the terms “metric” or “assessment.” We do so even 
though the term metric is quite popular. Typically (although not uniformly) within 
the cyber resilience literature, metrics refer to qualitative assessments of a system 
(actually existing or its design) by subject-matter experts (SMEs) (Alexeev et al. 
2017; Linkov et al. 2013; Beling et al. 2021).  

We, however, take a different perspective: quantitative and not qualitative, 
experimental, using physical quantities to the extent possible, business task 
focused, theoretically and empirically grounded. As such, we chose to use the term 
“measure” and not “metrics.” 



 

2 

Section 2 proceeds to summarize, in a concise fashion, the key steps of the QMOCR 
methodology. This is intended to provide the reader with the gist of the approach, 
for the purposes of quick initial familiarization. Then, Section 3 provides more 
detailed discussion of each step. Section 4 offers conclusions and 
recommendations. The Appendix defines key concepts used in this report and 
describes an example of an experimental test-bed and an experimental technique 
that can serve as a simple example of applying the QMOCR methodology. It also 
discusses the mathematical techniques used to process the experimental data within 
the QMOCR methodology. 

2. Key Steps of the Methodology  

Here we outline, briefly, the key steps that together constitute the QMOCR 
methodology. The following section provides more detailed discussion of each 
step. 

1) Identify, document, and obtain a system under test (SUT).  

2) Define a set of representative business tasks of the SUT. 

3) Define an appropriate, representative set of cyber attacks. 

4) Define aggregate business task-relevant performance function of the SUT. 

5) Equip the SUT with instrumentation for data collection. 

6) Develop tools that allow the testing team to execute (or emulate effects of) 
the cyber attacks in a repeatable fashion.  

7) Execute a sample of business tasks nominally (no cyber attacks); measure 
business task-relevant performance parameters. 

8) Repeat same business tasks while undergoing a (randomized) set of cyber 
attacks; measure business task-relevant performance parameters. 

9) Compute relative functionality for each business task. 

10) Compute the measure of resilience R, for each attack episode within the 
business task. 

11) Compute effectiveness of malware M, and effectiveness of bonware B for 
each attack episode within the business task. 

12) Review and document the meaning of the results.  
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3. Detailed Discussion 

This section is organized as a collection of notes referred to in the previous 
section. The notes explain and illustrate the key steps of the QMOCR methodology. 

The numbering of notes corresponds to the steps outlined in Section 2. For example, 
Notes 3a and 3b refer to Step 3, and so on.  

Note 1. The SUT can be an actual system, at different levels of development 
ranging from an early prototype to a deployed system. Alternatively, it could be a 
working, executable model (physical, digital, or digital–physical). As an example, 
in one case study (see Appendix) we used a digital–physical model of a cargo truck. 
The engine control units (ECUs) and the controller area network (CAN) bus of the 
truck were physical (i.e., actual electronic components). All other functional 
elements of the truck were computer simulated, including such things as 
performance of the engine and cooling system, interaction of the truck with the 
physical environment (terrain), additional sensors and their behaviors, and so on. 
In this case study, we also had an actual cargo truck for final testing and analysis 
of our methodology. In another case study, the SUT was a developmental database 
system for which a working prototype was available. 

Note 2. The variability of business tasks that a given SUT might perform is often 
very broad. It is impossible to test the SUT under every possible variation of its 
business tasks. The testing team, in coordination with relevant organizations, 
should select a small set of typical business tasks (e.g., no more than 3 to 5 
significantly different business task types) and define variable parameters 
associated with each business task. For example, in one case study (see Appendix) 
for a cargo truck, in consultations with SMEs we selected one type of a business 
task: delivering a cargo to a customer location, over a mountainous terrain. For this 
business task type, we selected several variable parameters including profile of the 
terrain (multiple routes were pseudo-randomly chosen from a representative 3-D 
terrain model), and quality of the road pavement (paved, gravel, unimproved trail).  

In another case study, the types of possible business tasks were very few, and in 
consultation with SMEs we have considered only one, most common business task 
type, with timing of the adversarial attack being the only parameter.  

Note 3a. The diversity of types of cyber attacks, the variability within a given cyber 
attack type, and combinations of attacks are infinite. Only a limited set can be 
explored in any realistically feasible test. The test team should consult relevant 
organizations for the types of cyber attacks that are considered representative and 
likely to be experienced by the given SUT within the given set of business tasks (as 
defined in Step 2). Where appropriate, the testing team, in coordination with 
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relevant organizations, should define variable parameters associated with each 
attack type within the selected set. For example, in a case study involving a cargo 
truck, we selected the following types of attacks: message flooding/signal takeover 
and ECU firmware alteration. Some of these attacks could be parameterized, such 
as time duration of attack and variable value assignment of a signal after successful 
takeover. 

Note 3b. In some cases, it is more productive to define not the specific attacks but 
rather their effects on the SUT. This approach offers a major advantage: instead of 
testing a multiplicity of cyber attacks, the test can focus on the potential effects 
produced by classes of attacks on the same manifestation of resistance and recovery 
exhibited (or not) by the SUT. For example, in the case study of a digital–physical 
model of a cargo truck, we determined that an extremely broad range of attacks 
(including yet unknown types) would result in a compromise of ECU that can be 
recovered by a single method of ECU re-flashing. In other words, we were able to 
measure the resilience of the SUT to an infinitely large set of attacks, without 
testing or implementing any of the attacks individually. Instead, this allowed us to 
choose a particular ECU, determine what effects a compromise of that ECU would 
demonstrate, and then exhibit those effects via degraded performance by the SUT. 

Note 4a. This step should start with identifying a few performance parameters of 
the SUT that are most relevant to the success of the business task (or a set of 
business tasks identified in Step 2) and are most likely to be impacted by the cyber 
attacks identified in Step 3. One source of candidate performance parameters can 
be the SUT documentation that often includes a list of Key Performance Parameters 
(KPPs). Consult SMEs for selecting most business task-relevant and attack-relevant 
parameters. Quantitative and binary parameters are strongly preferred. If a 
performance parameter is categorical, consider the possibility of using a numeric 
rating scale (e.g., a Likert scale), where a number is assigned (using objective, 
documented standards) to each category of performance.  

For example, in the case study of a digital–physical model of a cargo truck, we have 
selected one performance parameter: fuel efficiency of the truck. It was of critical 
importance in case of the business task we selected (the truck’s range was limited 
by the fuel on-board; there were no opportunities for refueling along the route; and 
if a cyber attack succeeded in decreasing the fuel efficiency, the business task of 
the truck could fail). It was also a parameter that could be strongly influenced by a 
successful cyber attack without necessarily creating a clear alert. In another case, 
SMEs determined that the SUTs ability to navigate to a business task-prescribed 
geographic area was the parameter most susceptible to cyber attack and highly 
detrimental to the business task success. We quantified the ability to navigate via 
the probability of successful arrival to the assigned area. In yet another case study, 
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SMEs selected a computer system response time as the business task-critical 
parameter most likely to be affected by the expected types of cyber attacks.  

Note 4b. Once the test team identifies the individual performance parameters, the 
parameters should be aggregated into a single, aggregate performance measure. 
Numerous methods exist for such an aggregation. The most common method is a 
weighted sum of individual parameters, where the weight of each relevant 
parameter may be determined by SMEs and may depend on the goals of a particular 
business task (i.e., some business tasks depend critically on speed, while others 
succeed only by stealth). Appropriate weights can also be determined more 
automatically through analyses in which researchers repeatedly simulate business 
tasks for different values of each relevant performance parameter and then calculate 
the success rate under the given conditions. This procedure would be an application 
of what is known as expected utility theory, a commonly used normative framework 
in applied decision theory (e.g., Abbas and Cadenbach 2018). 

Note 5. The SUT should be instrumented sufficiently to obtain the data that allow 
the test team to compute the parameters selected in Step 4. For example, in a case 
study of a digital–physical model of a cargo truck, instrumentation was provided to 
measure the amount of fuel consumed by the truck over time and the number of 
kilometers traversed by the truck over time. These two data items were sufficient 
to calculate the fuel efficiency (in kilometers per liter) of the SUT. This is done 
“on-the-fly” so that instantaneous fuel efficiency can be reported at regular time 
intervals across the business task duration. In practice, it is prudent to “over-
instrument” the SUT so that additional data—assessed as potentially relevant—
could be collected as well, in case the test determines that additional performance 
parameters must be considered.  

Data collection should be able to provide data over time, from the beginning to the 
end of the business task. If the business task’s entire time period cannot be covered, 
consider collecting data from a time prior to the start of the cyber attack and ending 
at the time when the aggregate performance measure reaches a steady state. Data 
can be physical in nature, such as fuel consumption and kilometers traveled. Data 
can also be strictly “cyber” in nature, such as the system response time or the 
volume of data exfiltrated by the adversary. In addition, data should provide 
insights on when the attack started, which subsystems it affected, and when the 
attack has been defeated or contained.  

Note 6. The tools may range from manually operated scripts to a semiautomated or 
fully automated Adversary Emulator. Depending on the nature of SUT and on the 
nature of the attacks determined in Step 3a, the test team may be able to use one of 
the open-source or commercial tools for Automated Red Teaming or Adversary 
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Emulation. In other cases, custom tools may be needed, if the nature of the SUT 
and the attacks differs from what the available tools cover. For example, in the case 
of a cargo truck where we focused our attention on CAN bus attacks, available tools 
(at the time) could not provide the necessary functionality. Note the tools may 
emulate an attack or alternatively the effect of an attack (see Note 3b). The test team 
should determine which of these two approaches would be more effective for the 
purposes of measuring the resilience of the SUT. For example, in the case of the 
cargo truck, we implemented both approaches in order to provide both faster data 
generation and methodology testing cycles for the digital–physical model, as well 
as a means to test an actual cargo truck within a high-fidelity adversarial 
environment. Both approaches were implemented in a fashion that promotes 
experiment repeatability with a minimum amount of human interaction or 
intervention. 

Note 7. Without cyber attacks and focusing on the KPPs identified in Step 4, 
execute a series of experiment runs with enough statistically relevant variability to 
produce a baseline of SUT performance. For example, in the case of a digital–
physical model of a cargo truck, we added variability in the form of truck target 
speed randomization with a threshold of ±5 km per hour of the actual target speed 
in order to simulate driver attention drift. Every 1 to 10 s, a new target speed within 
the threshold would be chosen in increments of ±2 km per hour from the previous 
target. Prior to every run, a unique seed is used to initialize the pseudo-random 
number generator responsible for providing the target speed randomization so that 
each run varies in its simulated attention drift. Decide whether to capture all or only 
relevant performance data. Capturing all data and reducing via postprocessing is 
recommended so that captures can be reused in the future when new performance 
parameters have been identified. However, if the magnitude of data is large and 
experiment repeatability is not a concern, then capturing only relevant performance 
data will suffice. 

Note 8. Repeat the same procedure as followed in Step 7 except with the inclusion 
of cyber attacks. If variability has been added, ensure that the randomization is 
initialized in the same manner in both the baseline (i.e., Step 7) and attack (i.e.,  
Step 8) runs. Otherwise, performance comparisons will be inaccurate. Consider 
multiple runs with the same attack at varying attack strengths (if applicable), start 
times, and durations. This will provide keener insight into the degradation and 
recovery, if any, exhibited by the SUT. 

Note 9. To compute the relative functionality of the system, simply divide the 
performance measure recorded in Step 8 (i.e., performance under attack) by the 
baseline performance measure recorded at the same time of the business task in 
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Step 7 (i.e., performance under normal business task condition, without a cyber 
attack). Do so for each time point of interest during the business task.  

For the sake of illustration, consider Fig. 1. Suppose in Step 7 we measured the 
performance of the SUT (in this case the performance happens to be the fuel 
efficiency of the SUT) in baseline execution of the business task; we recoded it as 
the blue line in the upper panel of Fig. 1. Then, in Step 8 we measured the 
performance of the SUT while subjecting the system to a cyber attack. We recorded 
that level of performance as the orange curve in the upper panel of Fig. 1. 

 

Fig. 1 Computing the relative functionality 

Next, for each time point we divide the performance under attack (i.e., a value on 
the orange curve) by the baseline performance (i.e., the value on the blue curve). 
The resulting number is shown in the middle panel of Fig. 1 as the gray curve. This 
“bathtub” shape of the relative performance curve is typical: the value is close to 
1.0 before the attack, then it drops, then stabilizes, and eventually recovers closer 
to 1.0.  

Note 10. To compute resilience R, first decide on the period T over which you wish 
to define the resilience. There are two obvious choices, and for special cases you 
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might want to define a different time period. One choice is the period of the attack. 
Looking at Fig. 1, the attack starts to manifest itself f by a drop of performance at 
time 300, and recovery is completed by approximately 700. Therefore, the period 
of the attack is 400 s; we can use this as the basis for computing resilience, in the 
following manner. The area of the “bathtub” shape (i.e., the area limited by the line 
of 1.0 at the top and by the gray line below) is about 35 s. (You can use any 
numerical integration procedure to compute this area.) This is the amount of 
performance (dimensionless) lost over the period of attack, which is 400 s. The 
resilience is then R = 1 – 35/400 = 0.912.  

Alternatively, you may select the entire duration of the business task (e.g., 10 h or 
36,000 s) as the basis for computing resilience. In that case, the resilience  
R = 1 – 35/36,000 = 0.999.  

In yet another approach, you might say that you expect such an attack to occur as 
often as every 10 min (i.e., 600 s), and you decide to use that time period as the 
basis for computing resilience. If so, the resilience R = 1 – 35/600 = 0.942. 

An important point here is that when talking about resilience, we should specify 
which period of time we use for computing resilience.  

Note 11. Experimental data also give us an opportunity to learn about the strengths 
of malware and “bonware” (everything that resists the malware) that participate in 
the process of losing and then recovering the performance of SUT. For details on 
definitions and on rigorous approaches to computing the effectiveness of malware 
M, and the effectiveness of bonware B, see the Appendix. Here, we describe a 
simplified procedure that assumes we can approximate the resilience episode (i.e., 
an attack followed by a recovery) with a bathtub shape illustrated in Fig. 1.  

In Fig. 1 (middle and lower panels), we see that malware causes a rapid drop in 
SUT’s relative functionality starting at time, t1 = 280, when the relative 
functionality is 1.0 (i.e., F1 = 1.0), and ending at time, t2 = 335, when the relative 
functionality is diminished to approximately F2 = 0.9107. Assuming the bonware 
is not yet active in this period, we can compute the effectiveness of malware M 
using the following formula: 

M = ln(F1/F2)/(t2–t1),                                        (1) 

where ln is natural logarithm. If you use Excel, use function LN.  

In this example we obtain M = ln(1/0.9107)/(335–280) = 0.0017. 

Then, at time approximately t3 = 545 the relative functionality starts to recover 
from F3 = 0.9107 and reaches the value of F4 = 0.998 by the time t4 = 716.  
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We assume here that the malware is no longer active in this period. In that case, we 
can compute the effectiveness of bonware B using Eq. 2: 

B = ln((F3–F1)/(F4–F1))/(t4–t3)                          (2) 

In this example, we obtain  

B = ln((0.9107–1)/(0.998–1))/(716–545) = 0.0222.                (3) 

Note 12. Any value of a quantitative measurement is meaningful only in context, 
particularly in comparison with other values. In our case, a value of cyber resilience 
is meaningful only in comparison with values measured for comparable systems. 
For example, it is difficult to decide whether a value R = 0.912 is low or high. On 
the other hand, suppose a truck without an autonomous cyber recovery module 
exhibits R = 0.63, and with addition of such a module it exhibits R = 0.912. Then 
we might conclude that introduction of the additional module results in a major 
increase of cyber resilience. 

4. Conclusions and Recommendations  

We assess that the proposed methodology exhibits the following features:  

• supports the ability to execute a diverse series of experiments and collect 
detailed data; 

• supports the ability to compute AUC-based resilience measure from 
experimental data; 

• supports the ability to derive newly proposed efficiency coefficients for 
malware and bonware; and 

• produces experimental results that are physically explainable, adequately 
stable, and meet monotonicity expectations.  

We make the following recommendations:  

• Application of the QMOCR methodology is appropriate—and should be 
considered—when an actual system, its prototype, or a working, executable 
model (physical, digital, or digital–physical) is available. In that case, the 
methodology uses such a working system or model for quantitative, 
experimental comparison of the system’s behaviors in normal operation and 
under attack.  

• In some cases, a thought experiment (i.e., tabletop experiment) may be 
performed when the participants of the thought experiment have prior 
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experiences observing the behavior of the system/model in operation or 
tests. 

• On the other hand, the QMOCR methodology is not appropriate at those 
phases of system design and development when a working prototype or 
working model are not yet available. In such cases, it may be appropriate to 
perform a structured qualitative assessment (not described in this report) by 
SMEs using descriptive models of the system under development  
(drawings, diagrams, schematics, process flows, formal specifications, 
functional decompositions, etc.). 
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The following Appendix is a technical paper that defines key concepts used in this 
report, describes an example of an experimental test-bed, and an experimental 
technique that can serve as a simple example of applying the QMOCR 
methodology. It also discusses the mathematical techniques used to process the 
experimental data within the QMOCR methodology. 



Quantitative Measurement of Cyber Resilience:
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Abstract— Cyber resilience is the ability of a system to
resist and recover from a cyber attack, thereby restoring
the system’s functionality. Effective design and develop-
ment of a cyber resilient system requires experimental
methods and tools for quantitative measuring of cyber
resilience. This paper describes an experimental method
and test bed for obtaining resilience-relevant data as a
system (in our case – a truck) traverses its route, in
repeatable, systematic experiments. We model a truck
equipped with an autonomous cyber-defense system and
which also includes inherent physical resilience features.
When attacked by malware, this ensemble of cyber-physical
features (i.e., “bonware”) strives to resist and recover from
the performance degradation caused by the malware’s
attack. We propose parsimonious mathematical models to
aid in quantifying systems’ resilience to cyber attacks.
Using the models, we identify quantitative characteristics
obtainable from experimental data, and show that these
characteristics can serve as useful quantitative measures
of cyber resilience.

I. INTRODUCTION

Resilience continues to gain attention as a key prop-
erty of cyber and cyber-physical systems, for the pur-
poses of cyber defense. Although definitions vary, it
is generally agreed that cyber resilience refers to the
ability of a system to resist and recover from a cyber
compromise that degrades the performance of the system
[1, 2, 3]. One way to conceptualize resilience is as the
ability of a system to absorb stress elastically and return
to the original functionality once the stress is removed
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or nullified [4]. Resilience should not be conflated with
risk or security [5].

To make the discussion more concrete, consider the
example of a truck which attempts to complete its
goal of delivering heavy cargo. The cyber adversary’s
malware successfully gains access to the Controller Area
Network (CAN bus) of the truck [6]. Then, the malware
executes cyber attacks by sending a combination of
messages intended to degrade the truck’s performance
and diminish its ability to complete its goal. We assume
that the malware is at least partly successful, and the
truck indeed begins to experience a degradation of its
goal-relevant performance.

At this point, we expect the truck’s resilience-relevant
elements to resist the degradation and then to recover its
performance to a satisfactory level, within an acceptably
short time period. These “resilience-relevant elements”
might be of several kinds. First, because the truck is
a cyber-physical system, certain physical characteristics
of the truck’s mechanisms will provide a degree of
resilience. For example, the cooling system of the truck
will exhibit a significant resistance to overheating even if
the malware succeeds in misrepresenting the temperature
sensors data. Second, appropriate defensive software
residing on the truck continually monitors and analyzes
the information passing through the CAN bus [7]. When
the situation appears suspicious, it may take actions such
as blocking or correcting potentially malicious messages.
Third, it is possible that a remote monitoring center,
staffed with experienced human cyber defenders, will
detect a cyber compromise and will provide corrective
actions remotely [8].

For the purposes of this paper, we assume that the
remote monitoring and resilience via external interven-
tion is impossible [9]. This may be the case if the truck
cannot use radio communications due to environmental
constraints (e.g., operating in a remote mountainous
area), or if the malware spoofs or blocks communica-
tion channels of the truck. Therefore, in this paper we
assume that resilience is provided by the first two classes
of resilience-relevant elements. Here, by analogy with
malware, we call these “bonware” – a combination of
physical and cyber features of the truck that serve to
resist and recover from a cyber compromise.

1



A key challenge in the field of cyber resilience is quan-
tifying or measuring resilience. Indeed, no engineering
discipline achieved significant maturity without being
able to measure the properties of phenomena relevant
to the discipline [8]. Developers of systems like a truck
must be able to quantify the resilience of the truck under
development in order to know whether the features they
introduce in the truck improve its cyber resilience, or
make it worse. Similarly, buyers of the truck need to
know how to specify quantitatively the resilience of the
truck, and how to test resilience quantitatively in order to
determine whether the product meets their specifications.

In this paper, we report results of a project
called Quantitative Measurement of Cyber Resilience
(QMoCR) in which our research team seeks to identify
quantitative characteristics of systems’ responses to cy-
ber compromises that can be derived from repeatable,
systematic experiments. Briefly, we have constructed
a test-bed in which a surrogate truck is subjected to
controlled cyber attacks produced by malware. The truck
is equipped with an autonomous cyber-defense system
[7, 9] and also has some inherent physical resilience
features. This ensemble of cyber-physical features (i.e.,
bonware) strives to resist and recover from the perfor-
mance degradation caused by the malware’s attack. The
test bed is instrumented in such a way that we can mea-
sure observable manifestations of this contest between
the malware and bonware, especially the performance
parameters of the truck.

The remainder of the paper is organized as follows. In
the next section, we briefly describe prior work related
to quantification of cyber resilience. In the following
section, we propose a class of parsimonious models
in which effects of both malware and bonware are
approximated as deterministic, continuous differentiable
variables, and we explore several variations of such
models. In addition, we discuss how parameters of such
models can be obtained from experimental data and
whether these parameters might be considered quantita-
tive characteristics (i.e., measurements) of the bonware’s
cyber resilience. In the next section, we introduce the
experimental approach we used to obtain resiliency-
relevant data; we describe various components of the
overall experimental apparatus and the process of per-
forming experiments. The ensuing sections illustrate the
experimentation and analysis using a case study, discuss
the experimental results, and offer conclusions.

II. PRIOR WORK

A growing body of literature explores quantification
of resilience in general and cyber resilience in particular.
Approximately, the literature can be divided into two cat-
egories: (1) qualitative assessments of a system (actually
existing or its design) by subject matter experts (SMEs)

[10, 11] and (2) quantitative measurements based on
empirical or experimental observations of how a system
(or its high-fidelity model) responds to a cyber compro-
mise [3, 12]. In the first category, a well-cited example
is the approach called the cyber-resilience matrix [13].
In this approach, a system is considered as spanning
four domains: (1) physical (i.e., the physical resources
of the system, and the design, capabilities, features and
characteristics of those resources); (2) informational (i.e.,
the system’s availability, storage, and use of informa-
tion); (3) cognitive (i.e., the ways in which informational
and physical resources are used to comprehend the
situation and make pertinent decisions); and (4) social
(i.e., structure, relations, and communications of social
nature within and around the system). For each of these
domains of the system, SMEs are asked to assess, and
to express in metrics, the extent to which the system
exhibits the ability to (1) plan and prepare for an adverse
cyber incident; (2) absorb the impact of the adverse cyber
incident; (3) recover from the effects of the adverse cyber
incident; and (4) adapt to the ramifications of the adverse
cyber incident. In this way, the approach defines a 4-
by-4 matrix that serves as a framework for structured
assessments by SMEs.

Another example within the same category (i.e., qual-
itative assessments of a system by SMEs) is a recent,
elaborate approach proposed by [14]. The approach is
called Framework for Operational Resilience in Engi-
neering and System Test (FOREST), and a key method-
ology within FOREST is called Testable Resilience Effi-
cacy Elements (TREE). For a given system or subsystem,
the methodology requires SMEs to assess, among others,
how well the resilience solution is able to (1) sense or
discover a successful cyber-attack; (2) identify the part
of the system that has been successfully attacked; (3)
reconfigure the system in order to mitigate and contain
the consequences of the attack. Assessment may include
tests of the system, although the methodology does not
prescribe the tests.

Undoubtedly, such methodologies can be valuable
in finding opportunities in improvements of cyber-
resilience in a system that is either at the design stage
or is already constructed. Still, these are essentially
qualitative assessments, not quantitative measurements
derived from an experiment.

In the second category (i.e., quantitative measurements
based on empirical or experimental observations of how
a system, or its high-fidelity model, responds to a cyber
compromise), most approaches tend to revolve around
a common idea we call here the area under the curve
(AUC) method [15, 16].

The general idea is depicted in Figure 1. The func-
tionality is plotted over time t. At time t = t0, a
cyber attack begins to degrade the functionality of the
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system, as compared to the normal level of functionality.
The system resists the effects of the cyber attack, and
eventually stabilizes the functionality at a reduced level.
At t = t1, the system resilience mechanisms begin to
overcome the effect of the attack and eventually recover
the functionality to a normal level. The area under the
curve (AUC) reflects the degree of resilience – the closer
AUC is to its normal level, the higher is the system’s
resilience.

t = 0 t0 t1 tend = T

Time t

F(
t) Cyber-attack

degrades
functionality

Functionality
recovers

Area under the curve

Normal level of functionality

System Functionality

Figure 1. The functionality F (t) is plotted over time t. At time t = t0,
a cyber attack begins to degrade the functionality of the system, as
compared to the normal level of functionality. The system resists the
effects of the cyber attack, and eventually stabilizes the functionality
at a reduced level. At t = t1, the system resilience mechanisms
begin to overcome the effect of the attack and eventually recover the
functionality to a normal level. The area under the curve (AUC) reflects
the degree of resilience – the closer AUC is to its normal level, the
higher is the system’s resilience.

In an experiment/test, a system engages in the perfor-
mance of a representative goal, and then is subjected
to an ensemble or sequence of representative cyber
attacks. A goal-relevant quantitative functionality of the
system is observed and recorded. The resulting average
functionality, divided by normal functionality, can be
used as a measure of resilience.

However, AUC-based resilience measures are inher-
ently cumulative, aggregate measures, and do not tell us
much about the underlying processes. For example, is
it possible to quantify the resilience effectiveness of the
bonware of the given system? Similarly, is it possible
to quantify the effectiveness of malware? In addition,
is it possible to gain insights into how these values of
effectiveness vary over time during an incident? We will
offer steps toward answering such questions in addition
to evaluating the AUC as a resilience measure.

With respect to experimental approaches, much of
the early experimental work on the cybersecurity of
automobiles used actual vehicles [17, 18, 19, 20, 21].
This approach offers high fidelity but also high costs,
especially when multiple experimental runs are required.

Other approaches avoided the expensive use of actual
vehicles by connecting multiple electronic control units
(ECUs) together on a Controller Area Network (CAN)

bus independent of a vehicle [22, 23, 24]. This is an
inexpensive method to test malware and bonware in
a vehicular network; however, it cannot characterize
impacts on the vehicle’s performance parameters.

Yet another experimental approach is to use a Digital
Twin: a system to reproduce real-world events in a
digital environment, e.g., [25]. A virtualized vehicle with
realistic virtual performance would provide high fidelity
at low cost in terms of time to test and measure cyber
resilience. However, constructing a virtual vehicle can
be prohibitively expensive, too.

III. QUANTITATIVE MEASUREMENT OF CYBER
RESILIENCE

In this section, we will first formalize our thinking
about cyber resilience, and then use our new formalism
to define the AUC-based measures of resilience as well
as the mathematical models that we will apply to our
experimental runs.

A. Formal Definition of Concepts

We define goal-relevant resilience as the ability of a
system to accomplish its goal—or at least maximize the
degree of accomplishment of its goal—in spite of effects
of a cyber attack, as a run unfolds over time. To this
end, we postulate that for a given run, there exists a
function A(t) that represents accomplishment and that
is cumulative from the run start time t0 up until the
present time t. We define functionality, F (t), to be the
time derivative of goal accomplishment. Thus,

F (t) =
dA
dt

, A(t) =

∫ t

t0

F (τ) dτ. (1)

Note that, in practice, functionality may vary with time,
even when the system performs normally and is not
experiencing the effects of a cyber attack. To be able
to account for this, we will often distinguish between
performance under baseline conditions, Fbaseline(t) and
performance during an attack scenario, Fattack(t). We will
require Fbaseline(t) > 0 everywhere where it is defined.

B. Resilience Based on Area Under the Curve

In Section II, we discussed the area under the func-
tionality curve, which is precisely normalized goal ac-
complishment A(T ) evaluated at the final time of the
run:

AUC =
1

T − t0

∫ T

t0

F (τ) dτ.

Here we expand on this concept to make a measure
of resilience that calculates the accomplishment—that is,
the area under the functionality curve—in a cyber attack
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scenario relative to the accomplishment in a baseline
scenario:

R =

∫ T

t0
Fattack(τ) dτ∫ T

t0
Fbaseline(τ) dτ

=
Aattack(T )

Abaseline(T )
. (2)

As a measure of resilience, R has a number of advan-
tages. By contrasting behavior in an attack scenario to
behavior in a comparable baseline scenario, it is able to
account for idiosyncratic differences between vehicles,
terrain, or any other features we hold constant between
the two scenarios. Additionally, R can be interpreted as
the fraction of normal functionality maintained during
a cyber attack. If it is close to 1.0, then the effect of
the attack was small; if it is 0.0, then functionality was
completely disrupted.

Finally, there may be multiple objectives to be con-
sidered jointly. Given a vector of resiliences, R =
(R1, R2, . . . , Rj , . . . , Rn), we define the overall cyber
resilience to be a weighted average of the various
objectives, using each Rj’s utility uj as a weight:
R =

∑n
j=1 ujRj , where

∑n
j=1 uj = 1. The utilities uj

must be determined by subject matter experts and may
be situationally dependent.

IV. MATHEMATICAL MODELING

Here we introduce a class of parsimonious models
in which effects of both malware and bonware on
goal accomplishments are approximated as deterministic,
continuous differentiable variables. Our models describe
the behavior of a system’s functionality over the course
of a run during which it is being attacked by malware
and defended by bonware. To simplify our modeling,
we assume the normal functionality to be constant in
time, FN(t) = FN. When we apply our mathematical
models to our experimental results in Section VI, we
will ensure this assumption by explicitly dividing the
functionality during a cyber attack scenario, Fattack(t), by
the functionality during a baseline scenario, Fbaseline(t),
to obtain F (t). With this definition of F (t), we ensure
FN(t) = FN = 1.

In the first set of models, we assume that there is
an observable, sufficiently smooth function representing
goal accomplishment, and we define functionality to be
its time derivative. Then, we motivate a parsimonious
model for the differential equation governing function-
ality, give the general solution, and discuss a few specific
cases.

A. Linear Differential Equation and General Solution

We make the assumption that goal accomplishment
is twice continuously differentiable: A ∈ C2, and thus
functionality is continuously differentiable: F ∈ C1.

Malware degrades the system’s functionality while
bonware aims to increase functionality over time. We

define the effectiveness of malware, M, to be a function
that, in the absence of bonware, when multiplied by the
functionality at the present time, causes the time rate of
change in functionality to decrease by that amount:

dFM(t)

dt
= −M(t)F (t). (3)

Similarly, the effectiveness of bonware, B, restores the
functionality by causing the time rate of change in
functionality to increase by the product of B with the
difference between normal and current functionality:

dFB(t)

dt
= B(t)(FN(t)− F (t)). (4)

Both malware effectiveness and bonware effectiveness
are continuous functions of time, M,B ∈ C0. The effec-
tiveness on functionality is the sum of the effectivenesses
of malware and bonware: dF (t)

dt = dFM(t)
dt + dFB(t)

dt , thus

dF

dt
+Q(t)F (t) = FNB(t), (5)

where Q(t) = M(t) + B(t).
Since we expect bonware to help (or at least not

harm) and malware to not help, we assume B(t) ≥ 0
and M(t) ≥ 0. We also assume normal functionality is
positive, FN > 0, and functionality is always positive and
less than or equal to normal functionality, 0 < F (t) ≤
FN. This first-order linear differential equation has the
following solution:

F (t) = e−
∫ t
0 Q(p) dp

(
F (0) + FN

∫ t

0

e
∫ τ
0 Q(p) dpB(τ) dτ

)
.

To help us understand how the model works, we find
explicit solutions for a number of examples.

B. Constant model

Assuming M,B, and Q are constant, we have

dF

dt
+QF (t) = FNB. (6)

1) No bonware: If B = 0, then Equation 6 reduces
to dF

dt + MF (t) = 0 and F (t) = F (0)e−Mt. If also
M = 0 (no bonware and no malware), then dF

dt = 0 and
F (t) = F (0).

2) Bonware: With bonware present, the solution is

F (t) =

[
F (0)− FNB

Q

]
e−Qt +

FNB
Q

. (7)

If F (0) > FNB/Q, then F (t), initially at F (0) at time
t = 0, will decrease to FNB/Q (see Figure 2). If
F (0) > FNB/Q, then the function F (t) = F (0) will
be constant. If F (0) < FNB/Q, the function will start at
F = F (0) and increase to FNB/Q. The plots for M > 0
in Figure 2 show that even in the presence of bonware,
malware has an impact on the system. The steady-state
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Figure 2. Normalized functionality, F (t)/FN, is shown for various
values of M (malware attacking) and B (bonware defending) and
initial condition F (0) = FN. The functionality over time depends
on the relative strengths of bonware and malware. With the system
initially at normal functionality and malware effectiveness nonzero,
functionality exhibits exponential decay.

of the system is obtained either by setting dF
dt = 0 in

Equation 6 or letting t → ∞ :

F∞ = lim
t→∞

F (t) = FN
B

M+ B
(8)

so that the antidote to malware is to overwhelm it with
bonware. The exponent, −Qt = (−M − B)t in the
solution given by Equation 7 indicates that increasing the
effectiveness of either malware or bonware will cause the
system to more quickly approach steady-state. At steady-
state,

FN − F∞

F∞
=

M
M+ B

. (9)

Equation 9 gives us further insight into the trade-off
between effectivenesses of both malware and bonware.
The relative decrease of the function from normal func-
tionality is equal to the ratio of malware effectiveness to
the sum of malware and bonware effectivenesses.

C. Piecewise constant model

If either malware’s or bonware’s effectiveness dimin-
ishes at some point in the incident, the model may switch
from one set of constants defining malware and bonware
to another set of constants. The differential equation
(Eq. 5) may now be expressed as

dF

dt
=

N−1∑
j=0

(FN − F (t))Bj(t)− F (t)Mj(t), (10)

where the vectors M = (M0,M1, · · ·MN−1) and
B = (B0,B1, · · · ,BN−1) contain the malware effective-
nesses and bonware effectivenesses within time windows
whose end points are defined by {t0, t1, · · · , tN}. The

solution will be a function which, in each time interval,
is the solution found in Equation 7:

F (t) =

[
F (tj)−

FNBj

Qj

]
e−Qj ·(t−tj) +

FNBj

Qj
,

(tj ≤ t < tj+1), (j = 0, · · · , N − 1)

where Qj = Mj + Bj . The purple curve in Figure 3 is
an example realization of this model.

0 20 40 60 80 100 120
Time t
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0.8
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F(
t)

Functionality: Notional Data and Fit F(t)

Notional Data Fit F(t)

Figure 3. The smooth curve is an example functionality curve with
piecewise constant malware and bonware effectivenesses. The notional
data and piecewise constant model fit are described in Section IV-F.

D. Linear model

The effectivenesses of malware and bonware may
also be linear functions of t, so that M(t) = ν − µt,
B(t) = α − β t, and Q(t) = λ−ωt, where λ = α+ν
and ω = β + µ. Under this linear model, Equation 5
becomes

dF

dt
+ (λ− ωt)F (t) = FN(α− βt). (11)

The solution can be expressed in terms of the error
function erf(z) = 2√

π

∫ z

0
e−τ2

dτ :

F (t)

FN
=

1

Ω(t)

{
F (0)

FN
− β

ω
(1− Ω(t)) + (αω − βλ)

×
√

π
2 e

Λ2

ω3/2

[
erf (Λ) + erf

(
ωt√
2ω

− Λ

)]}
(12)

where Ω(t) = eλt−
1
2ωt2 , and Λ = λ/

√
2ω.

E. Piecewise linear model

Both malware and bonware effectivenesses may ini-
tially be linear, but if the situation changes and a different
linear model holds after a time, the model should be able
to account for it. In particular, if malware effectiveness
is decreasing over time, at some point we will reach
M = 0 and the model switches to a new linear model.
Equation 11 can be written

dF

dt
=

N−1∑
j=0

[(λj − ωjt)F (t)− FN(αj − βjt)] .
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The solution follows from Equation 12:

F (t)

FN
=

1

Ωj(t)

{
F (tj)

FN
− βj

ωj
(1− Ωj(t)) + (αjωj − βjλj)

×
√

π
2
eΛ

2
j

ω
3/2
j

[
erf (Λj) + erf

(
ωj(t− tj)√

2ωj
− Λj

)]}
,

(tj ≤ t < tj+1), (j = 0, · · · , N − 1)

where Ωj(t) = eλj(t−tj)− 1
2ωj(t−tj)

2

and Λj = λj/
√

2ωj .
Example realizations of the piecewise linear models

are shown in Figure 4.
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Figure 4. Normalized functionality, F (t)/FN, is shown for piecewise
linear models and initial condition F (0) = FN. Both malware
and bonware effectivenesses are initially linear functions of time:
M = max(0.5 − 0.1t, 0),B = b0 + 0.04t. When malware
effectiveness reaches M = 0, bonware effectiveness continues to
increase.

F. Obtaining model parameters

Given data that represents functionality over the
course of an incident where malware and bonware are ac-
tive, we develop a fast method to estimate the continuous
model parameters for a curve that approximates the data,
and use these parameters to generate further realizations
based on this model. In Figure 3, notional data is shown
(in orange) and the parameters M and B are estimated
and a fit for the functionality F (t) is found that solves
the piecewise constant model expressed by Equation 10.
In this section, we illustrate our fast method to extract
the model parameters from this curve.

The set P = {t0, . . . , tK} partitions the scenario
timeline, and malware and bonware are constant in
each interval (ti−1, ti), i = 1, . . . ,K. In each interval,
Qi = Mi + Bi and the differential equation governing
Continuous Model I is dF (t)

dt +QiF (t) = FN(t)Bi. Thus,
in each interval (ti−1, ti), the solution is

F (t) =

[
F (ti−1)−

FNBi

Qi

]
e−Qi(t−ti−1) +

FNBi

Qi
.

We compute the effectiveness of malware Mi and the
effectiveness of bonware Bi in each interval.

We observe that there is a unique switching time t⋆

where the functionality’s trend reverses, and thus we take

K = 2. Before the switch, the effectiveness of malware
is greater than that of bonware. From the time of the
switch until the end of the run, bonware is stronger. To
estimate the switching time t⋆, we find the minimum
of the data to occur over the interval from 64 s to 75 s.
There, the minimum value of the data curve is m = 0.27.
Taking the midpoint, our estimate for t⋆ is 69.5 s.

We numerically solve this system of equations:

αm = FN
B1

Q1
,

m = F (0)− FN
B1

Q1
e−Q1t

⋆

+ FN
B1

Q1
.

The first equation says that where the curve meets the
minimum of the data, it has experienced exponential
decay of α toward the asymptotic minimum. We take
α to be α = 1 − 1/e. The second equation says that
the minimum occurs at the switching time (the time
when the model switches from malware dominating
bonware, to bonware dominating malware). Solving this
system of equations yields (with M1 = Q1 − B1),
M1 ≈ 0.025 and B1 ≈ 0.005. To the right of t⋆, we
fit an exponentially increasing function by numerically
solving this system of equations:

ζ =
F (0)B2

Q2
,

α̃ζ =

(
m− FNB2

Q2

)(
e−Q2(125−t⋆) +

FNB2

Q2

)
.

We have found that α̃ = 1 − e−4 and ζ = 0.95 are
satisfactory values to use for these hyperparameters. We
compute M2 ≈ 0.005 and B2 ≈ 0.088.

V. EXPERIMENTAL TESTBED AND METHOD

A key role of the mathematical models presented
above is to help analyze results of actual experimental
measurements of resilience. In this section, we introduce
the experimental test bed and experimental process we
use to observe and characterize cyber resilience of a
truck. In a typical resilience-measuring experiment, the
following occurs, conceptually: (1) The truck is assigned
a goal (delivering a cargo to a destination, along a
specified route). The truck begins to accomplish the
goal. The driver controls the truck aiming to maximize
probability of the goal’s success. (2) At some point
along the route, an adversarial cyber effect is activated
and begins to degrade goal-relevant performance of the
truck. (3) Physical and cyber elements within the truck
begin to resist the impact of the cyber effect. After
some time, these elements (i.e., bonware, collectively)
may succeed in recovering some or all of the degraded
performance. (4) The data collection and logging system
obtains and records the performance parameters of the
truck over time, from the beginning of the run until its
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Figure 5. A high-level overview of the data flow between components.
Portions are derived from [26].

end (successful or otherwise). The data are later analyzed
using the models presented earlier.

These processes and functions are implemented in
several components of the test bed, which include au-
tomotive hardware and simulation software: the Toyota
Portable Automotive Security Testbed with Adaptabil-
ity (PASTA) by Toyota Motor Corporation, the Unity
game development platform, Active Defense Framework
(ADF) developed at the DEVCOM Army Research Lab-
oratory, and the OpenTAP test automation framework
by Keysight Technologies. These components and their
roles are described in subsections below. In terms of
interactions between the components, Unity generates
messages via the Message Queue Telemetry Transport
(MQTT) publish-subscribe network protocol. ADF in-
gests these messages and translates them to Controller
Area Network (CAN) format, which are then injected
onto the appropriate CAN bus within PASTA. Figure 5
illustrates the flow of data between components.

A. PASTA

PASTA is a cyber-physical product by Toyota, in-
tended to develop and evaluate new vehicle security
technology and approaches on realistic “white-box”
electronic control units (ECUs) [26]. There are three
vehicle ECUs provided within the product, each with
its own CAN bus: powertrain, body, and chassis. These
three ECUs are responsible for their respective group of
messages, each generating and responding to traffic on
their bus. A fourth ECU, the central gateway (CGW),
acts as a junction between the three previously men-
tioned buses. Based on the message and source bus, the
CGW ferries messages to their appropriate destination
bus. The firmware for all ECUs is open-source, and is
accompanied by an integrated development environment
(IDE).

PASTA includes simulation boards which calculate
how the current CAN messages on the buses would
physically influence a commercial sedan. These boards
then update the vehicle ECUs with appropriate val-
ues. For example, when acceleration pedal operation

is inputted, the chassis ECU sends a message with
the indicated value. The simulation boards observe this
message and calculate the physical effects that would
result from the input. The results are used to update
the values reported by the powertrain ECU, which it
outputs onto its bus. In this instance, the powertrain
ECU would send messages indicating the new engine
throttle position, revolutions per minute (RPM), and
speed. Unfortunately, we found the simulation boards
rather constraining, for our purposes. We cannot alter,
for instance, the parameters involving the engine (e.g.,
torque and horsepower), the weight of the vehicle, or the
terrain that the boards are assuming is being traversed. To
overcome these constraints, we integrated a simulation
engine (Unity, see below) that would allow for user-
defined vehicle details as well as custom terrain. In this
configuration, PASTA becomes hardware-in-the-loop for
the simulation engine. Cyber attacks or defenses that
affect the ECUs present in PASTA will also affect the
performance of the truck within the simulation.

B. Unity

Unity is a widely used game development platform
[27]. In particular, Unity provides built-in assets and
classes regarding vehicle physics, which we leverage
to model interactions between our simulated truck and
custom terrain.

1) Simulated Trucks: We implemented three types of
truck within Unity – light, medium, and heavy. They are
designed to interface with data inputs from the white-
box ECUs within PASTA. In an experiment, the current
chosen truck produces inputs in response to the simu-
lated terrain. These inputs are sent to the corresponding
ECUs within PASTA. We then gather responses to these
inputs from the ECUs and send them back to the truck,
which it uses to calculate parameters like torque and fuel
consumption. For example, assume the truck reports that
the accelerator is set to 50%. This message is injected
into PASTA as if the chassis ECU had generated it.
The powertrain ECU responds to the message with the
corresponding amount of engine throttle. A message with
the engine throttle is sent back to Unity, which is then
applied to engine power calculations. With this flow, any
cyber attacks impacting the ECUs within PASTA will
affect the truck.

An automated driver is responsible for generating
steering, acceleration, and braking inputs as the truck
traverses the terrain. Steering is guided using a waypoint
system. Both acceleration and braking inputs are cal-
culated via a proportional-integral-derivative (PID) con-
troller guided by a target speed. The controller responds
to changes in the terrain or truck performance, and
maintains the target speed while preventing oscillation.
Optional target speed variability simulates driver atten-
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tion drift, which may be used to generate multiple unique
realizations of the simulation under otherwise identical
conditions.

Engine performance is calculated through the use of
torque, horsepower, and brake-specific fuel consumption
(BSFC) curves. Engine RPM is derived using the speed,
wheel circumference, and effective gear ratio. Using
this RPM value, the curves are evaluated to discern
the corresponding torque, horsepower, and BSFC value.
Torque is multiplied by the throttle and the current
effective gear ratio to obtain the total amount of torque
that can be applied to the wheels. Since our trucks are
all-wheel drive (AWD), each wheel receives the total
amount of torque divided by the number of wheels on
the truck. Horsepower and the BSFC value are used in
conjunction to calculate the amount of fuel that has been
used per physics update.

The truck is capable of providing sensor information
that is either not present in PASTA or needs its func-
tionality altered for our purposes. Currently, this applies
to the engine coolant temperature, attitude sensor, and
a set of backup engine ECUs. Engine temperature is
present in PASTA, but is aligned to the temperature
characteristics of a static commercial sedan. Within
Unity, we implemented a temperature model that can be
controlled by an external fan controller ECU. The fan
controller monitors the coolant temperature reported by
the truck and dictates the operation of a simulated fan
on the truck. The fan itself takes significant power to
operate, which results in a drop in the available torque
that can be applied to the wheels.

2) Terrain: The truck within Unity traverses a custom
terrain map that is roughly 81.8 km by 100 km with
altitudes up to 910 m. We crafted a course approximately
151 km in length across the map that encompasses
multiple terrain types: flat main road, flat off-road, hilly,
prolonged ascent, and prolonged descent. On a flat main
road, the target speed is 60 km per hour. Otherwise, the
target speed is 40 km per hour.

C. Active Defense Framework

ADF is a government-developed framework for pro-
totyping active cyber-defense techniques. ADF currently
supports Internet Protocol (IP) networks and vehicle
control networks, namely the CAN bus and Society of
Automotive Engineers (SAE) J1708 bus. The framework
acts as an intermediary for network traffic, as depicted in
Figure 5, allowing it to control network message flow,
as well as inspect, modify, drop, or generate network
messages. In our experimental test bed, ADF enables
communication between PASTA and Unity by translating
CAN messages to and from MQTT, a standard publish-
subscribe IP-based messaging protocol. ADF plugins are
also used to provide simulated ECU hardware, and to

implement cyber attack and defense methods on the
CAN bus via ADF’s ability to monitor, modify, inject,
or drop CAN traffic.

1) Unity-to-PASTA Message Translation: ADF and
Unity run on a standalone laptop and are connected to
PASTA via two universal serial bus (USB) CAN over
Serial (SLCAN) interface modules. One module is con-
nected to the powertrain CAN bus, and the other module
is connected to the chassis CAN bus. The PASTA CGW
is disconnected from the CAN buses for our experiments,
and the body CAN bus and body ECU are not used.
ADF is configured to serve as a CGW between Unity
and PASTA. Since Unity does not natively communicate
with CAN interfaces, ADF translates CAN messages
in real-time to MQTT messages and back. Unlike the
PASTA CGW, ADF does not relay messages between
the powertrain and chassis CAN buses themselves. ADF
relays powertrain CAN messages between Unity and
PASTA, and sends parameters from Unity to the chassis
CAN bus for display on the PASTA instrument cluster.
All communication channels are two-way.

2) Virtual ECUs within ADF: For some cyber attacks,
a virtual ECU is needed. For example, as mentioned
before, the PASTA platform does not simulate a con-
trollable cooling fan or provide fan controller ECU
functionality. Therefore, we simulate a fan controller
ECU using an ADF plugin. The fan controller engages
the engine cooling fan on the truck when the engine
coolant temperature reaches a defined upper limit, and
disengages the fan when temperature drops below a
lower limit. For the purposes of our experiments, the
fan controller ECU plugin can simulate an attack on
its own firmware, stop the attack, or reset/“re-flash”
itself (i.e., replace the ECU firmware). During a reset,
the fan controller is offline for a period of time. Use
of ADF enables creation of other simulated ECUs and
corresponding cyber attacks.

3) Performing Cyber Attacks via ADF: A class of
attacks on a vehicle bus involves injecting messages.
Messages are broadcast on a CAN bus, so one message
injected at any point on the bus will reach all ECUs on
the bus. While injection attacks cannot block or modify
normal CAN bus traffic, they can impact vehicle per-
formance if injected messages cause undesired vehicle
behavior. If an attacker can physically sever the CAN bus
wiring at a strategic point and place additional hardware
there, it is possible to block or modify the normal bus
traffic. Cyber attacks that block or modify messages can
prevent ECUs from controlling the vehicle or falsify
vehicle data.

As a man-in-the-middle between PASTA and Unity,
ADF can execute any of these bus-level attack types.

Cyber attacks on ECU firmware, by embedding mal-
ware, are also feasible. We have simulated the effects
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of embedded malware in three instances: on the fan
controller, the suspension controller, and the main engine
ECU. Malware on the fan controller simulates a “stuck
fan” attack in which malware has modified the fan
control ECU to not disengage the fan once engaged,
even when the coolant temperature has dropped below
the minimum operational temperature; the suspension
controller attack creates the appareance that the truck
is abnormally tilted, forcing the truck into a safe “limp
home” mode that reduces the amount of available gears;
the main engine ECU attack causes erratic performance
behavior.

4) Performing Cyber Defensive Actions via ADF:
Defending against message injection, blocking, and mod-
ification at the bus-level requires detecting and filtering
injected messages before they reach the ECU. The CAN
bus can be split at potential access points and hardware
placed in-line, hardware can be placed between the CAN
bus and critical ECUs, or defenses can be integrated into
the ECUs themselves. Examples of these defenses im-
plemented previously using ADF include cryptographic
watermarking and modeling observable vehicle states to
compare current parameters to the model’s prediction.

Cyber attacks on ECUs themselves must be ap-
proached differently. If an ECU is compromised, mea-
sures need be taken to restore proper ECU function.
Many ECUs can be re-flashed while the vehicle is
operational. The ECU may or may not be functional for
some duration while being reset or re-flashed, and the
impact this will have on vehicle performance depends
on the function of the ECU. For the ECUs simulated
by ADF plugins, the behavior is to make the ECU
unresponsive for a set duration, after which normal ECU
operation is restored. Note, for ECUs like the main
engine ECU, this is not possible because the vehicle
will become inoperable in its absence. To address this,
a manually-crafted ECU backup is used while the main
ECU is re-flashed.

D. OpenTAP and Data Collection

OpenTAP is an open-source test automation frame-
work developed by Keysight Technologies [28]. It pro-
vides a test sequencer to promote test repeatability,
a customizable plugin facility capable of integrating
plugin classes implemented in C# or Python, and result
listeners responsible for capturing test data for further
analysis. OpenTAP is used to automate the execution of
experiments and provide a GUI for testing practitioners
to configure experiment steps.

Data are captured from the truck. Examples of data
are fuel efficiency, speed, engine torque, and acceleration
pedal input; each data value comes with a timestamp of
the value occurrence.

E. Execution of Experiments

Each individual experimental run follows the same
set of steps. During setup, we establish CAN connec-
tions to PASTA, ensure the messaging infrastructure is
running, and start Unity. During parameter selection,
we determine the truck type, cargo weight, type of
cyber attack, etc., and designate the number of runs.
During execution, we run automated test scripts with
the given parameters and capture the data in a desired
format. Finally, we parse and preprocess the data, fit our
mathematical models, and generate graphs and results.

An experiment reflects execution of a single run as
described in the beginning of this section. On our terrain,
a typical run would take 2-3 hours to traverse in its
entirety. However, we focus on shorter 15-minute runs
that encompass a cyber attack at variable moments
within the run and a potential recovery. Note that it
may take the truck several minutes to recover from the
attack. We are also capable of executing faster-than-real-
time when using solely simulated components, further
decreasing execution time of experiment runs.

To form a series of experiments, within our test bed,
there are multiple parameters that can be configured to
generate varied data captures. Currently, these include:
truck type, experiment duration, cyber attack start time,
terrain type(s), starting location, ending location, target
speed, cyber attack-defense pairings, cargo weight, and
target speed variability.

VI. EXPERIMENTAL DATA

Using our test bed, we conducted a series of exper-
imental runs in which a truck is subjected to a cyber
attack. Here we focus on one of these series. In this
series of experiments, we considered three types of
trucks with four possible cargo weights including 0, the
five unique terrains described above, and three types of
cyber attacks, including one “baseline” scenario with
no cyber attack (see Table I). For each combination of
these, we conducted 30 experimental runs and recorded
the truck’s speed, fuel efficiency, and other operating
parameters. The 30 runs were made unique by adding
random variability to the driver’s interaction with the
accelerator (i.e., “driver attention drift” as described in
Subsection V-B).

Table I
OVERVIEW OF EXPERIMENTAL DESIGN

Independent variable Possible values
3 trucks { Light, Medium, Heavy }
5 terrains { Steady Descent, Flat Road, Flat Off-

Road, Hilly, Steady Ascent }
4 cyber attack scenarios { Baseline, Fan, ECU, Suspension }
4 cargo weights { None, Light, Medium, Heavy }
30 random seeds {1 . . . 30}
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Figure 6. Examples of experimental data, illustrating that cyber attacks
reduce performance both in fuel efficiency (top panel) and speed
(middle panel), and that changes in cargo weight reduce fuel efficiency
in the expected manner (bottom panel). Top panel: The fuel efficiency
of a heavy truck, carrying no cargo, during a run on hilly terrain.
The orange curve indicates the fuel efficiency in the “engine ECU
attack” run, which is contrasted with the (partly occluded) cyan curve
that indicates the baseline run. Middle panel: Recorded speed during
the same run. Bottom panel: Fuel efficiency, now for all four cargo
conditions (from top to bottom: 0, 3,000, 6,000, and 9,000kg).

A. Data Preprocessing

The operating parameters were recorded at a relatively
high frequency of about 50 Hz, which sometimes causes
numerical instability (e.g., in calculating fuel efficiency
over a 20 ms period). For this reason, we first applied a
smoothing filter to the data. We chose a running median
filter with a window of 72 s. The running median has
the advantage that it downweights extreme values that
might result from numerical inaccuracy. We then took
the mean of the 30 runs in each condition to obtain the
relatively smooth time series seen in Figure 6.

The three panels of Figure 6 each show the time course
of a performance parameter. The top two panels each
show one curve for the baseline run (cyan) and one for
an attack run (orange). The bottom panel shows four
attack runs with different cargo weights.

B. Resilience R

We will use the experimental data to compute the R
statistic introduced in Equation 2 in subsection III-B.

The computation of R is illustrated in Figure 7. The
calculation involves (1) finding the area Aattack under the
performance curve during the time when the cyber attack
is active, then (2) finding the corresponding area Abaseline
under the baseline performance curve, and (3) dividing
the former by the latter. If the resulting R is 1.0, then the
cyber attack had no detrimental effect on performance.
R of 0.0 means that performance was reduced by 100%.

C. Modeling Approach

Our modeling approach requires one further data
processing step, which is illustrated in Figure 8. The top
panel shows a baseline and attack performance curve.
The ratio of these curves (i.e., performance under attack
divided by the baseline value) is shown in the middle
panel – this ratio is close to 1.0 when performance under
cyber attack is similar to the baseline performance, and
less than 1.0 when the cyber attack is detrimental to
performance. This performance ratio is the measure of
functionality that we use for our modeling. In the bottom
panel, we show the fitted “piecewise constant” model
that is described in Subsection IV-C. The red and green
intervals indicate the activity periods of the malware
and bonware, respectively. When they are inactive, these
effectiveness parameters are 0, otherwise they are M and
B respectively. We can see that the model captures the
drop in performance when the malware is active.

To summarize and interpret our data, we applied this
model to the data from each experimental condition
separately. In order to automate the parameter estimation
process, we implemented our piecewise constant model
using a Bayesian inference engine [29, 30]. To further
facilitate the automation, we additionally allowed the
model to estimate the time points where performance be-
gins to decline (t1) and recover (t2). This implementation
is considerably slower than the fast method developed
above in subsection IV-F, but it has the advantage of
being fully automatic and easily extendable for future
projects. The method has the additional advantage that
it lets us quantify the uncertainty in parameter estimates.

VII. DISCUSSION OF RESULTS

A. Experimental Results

Considering the large scope of our experiment, we
focus on examples of the types of conclusions we are
able to draw.

First, as Figures 6, 7, and 8 show, our cyber attacks
cause decreases in performance in the expected parame-
ters at the expected times. For example, the cyber attack
on the suspension causes a reduction in fuel efficiency
and speed compared to the baseline scenario. We also
see a slight square-wave pattern with a period of 72 s,
corresponding to the normal behavior of the engine
cooling fan periodically engaging and disengaging. We
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Figure 8. Progression of data over time. Top panel: Fuel efficiency of
a heavy truck, carrying no cargo, during a run on steadily descending
terrain (orange: Engine ECU attack run; cyan: baseline run). Bottom
panel: The fuel efficiency ratio (solid grey line) is the performance
in the attack run divided by the performance in the baseline run. The
overlaid, blue dashed line, is the fit of the continuous model. The green
and red horizontal lines at the top and bottom indicate the times when
the bonware and malware (resp.) are active. The model captures the
rapid decline to an equilibrium state around 92% performance as well
as the more gradual recovery after the cyber attack.

also see that fuel efficiency decreases as cargo weight
increases.

B. Resilience R

Figure 7 illustrates that the resilience measure R
(based on the area under the curve concept) follows our
intuitive understanding of what a measure of cyber re-

silience should do: it is higher if performance is impacted
by cyber attack less, and lower if it is impacted more. It
is relatively unimpacted in cases where no impact was
expected (e.g., on the flat road subroutes in Fig. 7, there
is no difference between cargo weight conditions), and it
gives orderly results when differences are expected (e.g.,
when in Fig. 7 the R is affected by cargo weights, it is
consistently lower for heavier cargo).

The top panel of Figure 9 shows results for the same
truck when it is subjected to the cyber attack on the
engine fan controller. Here, we see a different pattern
of results, with the effect generally being greater when
the cargo is lighter. However, the results remain ordered
and show a great deal of consistency. There seems to
be much less difference between subroutes during this
attack. Also, on average, the loss of functionality due to
this attack is smaller than that due to the attack on the
engine ECU.

Taken together, our experimental data support the
validity of the R measure as a quantitative measure of
cyber resilience.

C. Modeling Results

As illustrated in Figure 8, our mathematical model
and the experimental data exhibit a similar pattern and
the model produces a good fit. Moreover, the estimates
of parameters M and B attain values that reflect the
temporal behaviors of experimental data (e.g., high B is
associated with rapid recovery, and the ratio of B/(M+
B) approximates the performance equilibrium when the
cyber attack is active).
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The modeling approach allows us to summarize com-
plex time series with two interpretable parameters: the
malware effectiveness M and the bonware effectiveness
B. This facilitates comparison of the cyber resilience
of our trucks under various conditions. For example,
Figure 9 shows the pattern of results of an engine
ECU cyber attack on a heavy truck (note: higher B
means more effective bonware and higher M means
more effective malware). At a glance at the middle panel,
we can determine that the truck resists the cyber attack
better when it is not hauling cargo (blue markers are
always higher), and especially so when the terrain is a
steady ascent (the difference is especially pronounced
in that subroute). The bottom panel shows that the cyber
attack is relatively more effective when the cargo is light
(blue markers are often higher) and especially the road
is flat (the blue line has its peak there). Comparing the
magnitude of the parameter estimates between the two
panels (B is greater than M by at least an order of
magnitude) tells us that this cyber attack, even at its most
effective, only has a modest effect on functionality.

VIII. CONCLUSIONS AND FUTURE WORK

We have reported results of the Quantitative Measure-
ment of Cyber Resilience project, in which we obtain
experimental data with physical-digital twins of several
cargo trucks and analyze the data with mathematical
modeling of time series in order to quantify and measure
the cyber resilience of the trucks. We were successful
in generating data with apparent fidelity, showing that
changes in the setup of the experimental runs (e.g.,
heavier cargo, more challenging terrain) result in differ-
ences in performance that accord with our subject matter
expertise as well as common sense expectations.

We proposed two types of summary statistics. One
is a measure of resilience based on the area under
the performance curve. Another type is based on fits
of a mathematical model to temporal evolution of the
performance curve, and measures the effectiveness of
malware and bonware. These measures seem to capture
the salient patterns in the experimental data succinctly,
supporting their use as quantitative measures of cyber
resilience.

We believe there is much that could still be learned
with our (or a similar) test bed. Data is relatively
easy and fast to gather, and more variables can still
be introduced. Additionally, similar test beds could be
constructed for other types of vehicles, but also for other
diverse types of complex equipment, infrastructure, or
critical digital services. For the trucks, the test bed could
still be augmented with additional derived measures of
functionality, such as maneuverability.

Similarly, there are further potential developments in
the mathematical modeling aspect. New models could
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Figure 9. Example results of experiments. Round markers indicate
parameter estimates, the intervals around the markers are 95% credible
intervals. Each panel summarizes 1,200 runs (5 terrains by 4 cargo
weights by 30 repetitions, once under baseline and once under cyber
attack). Top: The R measure for a medium truck subjected to a
fan cyber attack. Middle and bottom: Parameter estimates of the
piecewise continuous model applied to performance of a heavy truck
under a cyber attack on the engine ECU. The middle panel displays the
effectiveness of the bonware as a function of terrain and cargo weight,
while the bottom panel displays effectiveness of the malware. One
observation is that the effectiveness of the bonware is generally much
higher than that of the malware, largely due to the physical resilience
of the truck machinery.

be implemented to allow for multivariate functionality,
to account for trade-offs between different performance
parameters.
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SME  subject-matter expert 

SUT system under test  
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