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In an attempt to increase the reliability of empirical findings, psychological scientists have recently proposed a number of changes in the
practice of experimental psychology. Most current reform efforts have focused on the analysis of data and the reporting of findings for
empirical studies. However, a large contingent of psychologists build models that explain psychological processes and test psychological
theories using formal psychological models. Some, but not all, recommendations borne out of the broader reform movement bear upon
the practice of behavioral or cognitive modeling. In this article, we consider which aspects of the current reform movement are relevant to
psychological modelers, and we propose a number of techniques and practices aimed at making psychological modeling more transparent,
trusted, and robust.
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You never want a serious crisis to go to waste . . . This crisis provides
the opportunity for us to do things that you could not before.

Rahm Emmanuel, 1998

The field of psychology has recently questioned whether its findings
are as reliable as they need to be to build a useful and cumula-
tive body of knowledge. The growing lack of trust is sometimes
called a “crisis of confidence” (Pashler & Wagenmakers, 2012,
p. 528). A retrospective by Spellman (2015) identified a set of five
causes for this crisis. A first rare but worrying culprit has been
the manipulation and fabrication of empirical data (Simonsohn,
2013; Wagenmakers, 2012). A second more common problem
has been the failure of established empirical findings to replicate in
careful and systematic attempts (Alogna et al., 2014; Klein et al.,
2014; Shanks et al., 2013; Open Science Collaboration, 2012). A
third problem involves increasing recognition of the inherent but
undisclosed flexibility in data collection and analysis, sometimes
called “researcher degrees of freedom” (Simmons, Nelson, & Si-
monsohn, 2011). A closely-related fourth problem is the possibility
of selective reporting and hypothesizing after empirical results are
known, sometimes called “HARKing” (see Bones, 2012; Kerr, 1998;
and Figure 1). Finally, Spellman (2015) noted the difficulties of
obtaining other researchers’ data for re-analysis, verification, and
conducting meta-analyses (Vanpaemel, Vermorgen, Deriemaecker,
& Storms, 2015; Wicherts, Borsboom, Kats, & Molenaar, 2006).

In reaction to the crisis in confidence, there has been an effort
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to identify and enforce good practices for analysis and reporting
of experimental data. The practice of pre-specifying data collec-
tion and analysis plans, long required in clinical trials, has been
proposed in psychology to limit both HARKing and undisclosed
flexibility. This practice has become collectively known in psychol-
ogy as preregistration (e.g., Matzke et al., 2015; Munafò et al.,
2017; Nosek, Ebersole, DeHaven, & Mellor, 2018; Wagenmakers,
Wetzels, Borsboom, van der Maas, & Kievit, 2012). A new publica-
tion format known as registered reports has been adopted by more
than 100 psychology journals as a way to incorporate these ideas
directly into the research and publication pipeline1 (Chambers,
2013; Chambers, Dienes, McIntosh, Rotshtein, & Willmes, 2015;
Hardwicke & Ioannidis, 2018). Psychologists have also recognized
the importance of replication as a tool for verifying scientific claims
(Open Science Collaboration, 2012, 2015), and vigorously debated
what role replication plays in a healthy science (see Zwaan, Etz,
Lucas, & Donnellan, 2018, and its associated commentaries). In
addition, psychologists have pushed for open data, open code,
and open materials to allow for better verification and reanalysis of
study results. For example, the Transparency and Openness Pro-
motion (TOP) guidelines (Miguel et al., 2014; Nosek et al., 2015)
is a collection of eight key open science practices structured into
three levels of increasing stringency. The TOP guidelines have
been implemented by more than 5,000 scientific organizations and
more than 1,000 journals spanning many scientific disciplines.

The crisis of confidence reaches beyond experimental psy-
chology. The focus of the crisis of confidence in psychology has
been in experimental psychology, involving the analysis of em-
pirical data using standard statistical methods. Often, however,
psychology seeks to understand its data and theories using models
(Farrell & Lewandowsky, 2018; Sun, 2008). Modeling and model-
based inference is closely related to the standard statistical data
analysis routinely used in experimental psychology. While familiar
data analysis methods like regression and analysis of variance are
often thought of as procedures, they can also be thought of as
statistical models used to perform inference.

From this perspective, the only difference between statistical
1Note that registered reports involve more than preregistration: They also involve a journal’s guar-
antee that a paper will be published regardless of how the data turn out.
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Fig. 1. A caricature of questionable research practices, conceived as fishing for
research results by the manipulation of data (“fudging”) and selective consideration
of hypotheses (“HARKing”). Artwork by Viktor Beekman based on a concept by
Eric-Jan Wagenmakers. Reproduced under a CC-BY license. Source: https://
www.bayesianspectacles.org/library/.

analysis and psychological modeling lies in the emphasis that
psychological models place on substantive interpretation. The
data-generating mechanisms in a psychological model can usually
be interpreted in terms of psychological processes, such as storing
an item in memory, attending to a stimulus feature, or making a
decision. The parameters in a psychological model can usually be
interpreted as unobservable psychological constructs governing
the processes, such as the capacity of working memory, the level
of selective attention, or the bias affecting a decision.

Such “psychology-descriptive” models can provide substantive
insights, unlike some machine learning and statistical models that
focus exclusively on prediction. They can broaden the types of
experimental data that can be analyzed, including small data sets,
and non-standard experimental designs. Finally, they can provide
stronger tests of competing psychological theories, because the
models correspond more closely to the theories and formalize
more of the assumptions made by the theories (Vanpaemel, 2010).

The close relationship between standard data analysis and
model-based analysis suggests that the critical re-examination of
data analysis methods in psychology also has ramifications for
psychological modeling. Accordingly, the goal of this article is to
consider how the lessons learned from the crisis in experimen-
tal psychology could improve modeling practices in psychology
and cognitive science. In our discussion, we divide good mod-
eling practices into three general parts: those that apply before
data have been collected, those that apply after data have been
collected, and a set of general good practices throughout model-
based research. We consider each of these parts in turn, illustrat-
ing the general issues with specific examples drawn from various
sub-fields of psychological modeling. We conclude with a brief
discussion of techniques to make psychological modeling more
transparent, trusted, and robust.

Good practices before data are collected

Preregistering models, the players in the game. Preregistering
models and their predictions can be a useful scientific practice.
One way to think of the practical benefits of preregistrations is that
it can help a researcher in much the same way that preregister-

ing a dissertation research plan can help a graduate student. It
provides an explicit and detailed plan of action at the beginning
of the enterprise. Preregistration is not intended as a constraint
on what can happen, and will generally not anticipate everything
that could happen. The preregistration does, however, provide a
clear statement of the motivating goals for the research, and the
intended ways in which those goals will be met.

Preregistration is especially important in a confirmatory re-
search setting, in which data are used to evaluate the adequacy
of a model or to compare multiple models. As part of such a pre-
registration, it is important to be clear about what are core versus
ancillary modeling assumptions, and how these relate to the re-
search questions. Core assumptions are those that motivated the
empirical test and will usually correspond to the major theoretical
questions being addressed by the research. Ancillary assumptions
involve various possible choices to non-core parts of the model.
An example of this distinction is provided by the “Expected Utility
Theory” case-study box.

Ideally, a preregistered model could take the form of the precise
predictions that are made by the model. Bayesian methods, by
requiring both a likelihood and a prior, automatically make com-
prehensive predictions about data, but it is usually possible to
preregister some predictions using non-Bayesian methods as well.
In addition, in most research situations involving model compari-
son, there are many possible models that could be included. As
for the methods of analysis, if model comparison is to be used, it is
important to preregister the models that will be compared to one
another. This prevents “changing the players in the game” once
data have been seen. That is, it prevents one from introducing a
model that performs poorly on the data, to give the impression that
the originally-proposed set of models fare relatively well, or from
introducing a model that was directly inspired by the data, which
will perform well on the data sample but may generalize poorly due
to over-fitting.

It is important to emphasize that preregistration is not neces-
sarily needed at all stages of the modeling process. A large part
of developing psychological models is exploratory in nature. It
may be more useful, in many cases, to engage in a practice we
call postregistration. Postregistration involves keeping a compre-
hensive log of the modeling process that acts as an “activity log”
documenting the process of model building and checking. This
concept is discussed in the section “Exploratory analyses and
postregistration” below.

Preregistering evaluation criteria, the rules of the game.
There are usually many ways in which we can evaluate a model
against data. All of the following metrics are used regularly to
evaluate models: p-values, correlation coefficients, variance ex-
plained measures, sum of squared error, mean absolute deviation,
proportion of agreement, maximum likelihood, normalized maxi-
mum likelihood, information criteria (AIC, BIC, DIC, WAIC, etc.),
and Bayes factors (Shiffrin, Lee, Kim, & Wagenmakers, 2008).
Many of these measures are similar to one another, or are exactly
equivalent in special cases. In other cases, these metrics may
give different and opposite results for a key research question for
exactly the same models and data.

An illustrative example is given in Figure 2. Both panels in
that figure display an artificial data set with 10 conditions. Each
condition is characterized by its sample mean and sample standard
deviation on the vertical axis. The horizontal axis depicts the
predictions made by two fictional models, so that any deviation
from the diagonal indicates the degree of model misfit. Various
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Example 1: Expected Utility Theory

As a concrete example of the difference between core and non-
core assumptions, consider an example from psychological
models of choice based on expected utility theory. The famous
Allais (1953, 1979) paradox presents two problems involving
choices between a “safe” gamble and a “risky” gamble. The
problems are designed such that, according to expected utility
theory, a decision maker should either choose the safe option
for both problems, or the risky option for both problems. A core
assumption of expected utility theory is that decision makers
have a stable preference state for the safe or risky option that
applies to both gambles. This leads to the prediction of the
theory that a mixed response—choosing the safe option in one
problem and the risky option in the other problem—cannot hap-
pen at the individual level. Observed behavioral data typically
has at least some violations of this strict prediction, which is at-
tributed to some form of error in the individuals’ decision-making
processes (Birnbaum & Quispe-Torreblanca, 2018). Assump-
tions about errors are good examples of ancillary assumptions.
They are also a good example of the level of modeling detail
typically needed to make complete predictions. Specifying how
likely it is that errors will be made, and how frequent those
errors could be, transforms the modeling predictions from a
qualitative one of “the theory predicts this will not happen” to
specific predictions about how many people will produce each
of the possible types of behavioral patterns in an experiment.
In this context, preregistration would be appropriate to test
whether or not individuals show safe and risky options. A sub-
sequent exploratory modeling exercise could be to develop a
mechanism that describes the errors and when they occur.

summaries of the goodness-of-fit are also listed for each model. In
terms of the product-moment correlation (r) Model 2, in the right
panel, is preferred. In terms of the root mean square error measure
(RMSE) Model 1, in the left panel, is preferred. The models are
very close in mean absolute deviation (MAD) measures. In terms
of the log-likelihood Model 2 is preferred. Other metrics require an
account of the complexity of the models. For the purposes of our
example, assume that Model 1 has one parameter, and Model 2
has five parameters. Using this information, the Akaike Information
Criterion (AIC) and Bayesian Information Criterion (BIC) both prefer
Model 1. The difference based on the BIC, however, is larger,
which may lead to stronger claims (Wagenmakers & Farrell, 2004).
Which metric to choose in practical applications is a challenging
statistical and methodological question that remains an active area
of debate and research throughout the empirical sciences and
statistics (Myung, Forster, & Browne, 2000; Navarro, in press;
Shiffrin et al., 2008).

The purpose of the example in Figure 2 is to illustrate how even
in very common situations different reasonable and widely-used
metrics can suggest conflicting conclusions. This leads us to our
recommendation that researchers preregister the methods of eval-
uation that will be used. Such preregistration prevents “changing
the rules of the game”—whether intentionally or not—once data
have been seen. A good preregistration should also provide an
argument for the suitability of the chosen metric in terms of the rele-
vant statistical and methodological considerations. Preregistration
notwithstanding, once the data are collected it remains important
to evaluate whether any assumptions of the analyses or model
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Fig. 2. Example of different results provided by different metrics for assessing the
adequacy of models. The two panels show the goodness-of-fit of two models to the
same data. Each panel lists the adequacy of the model as measured by the product-
moment correlation (r), the root mean square error (RMSE), the mean absolute
deviation (MAD), the log likelihood (LL), the Akaike Information Criterion (AIC), and
the Bayesian Information Criterion (BIC).

comparison tools are violated. Preregistration is no substitute for
good judgment and care must be taken not to fixate on the results
of one model comparison metric for no other reason than that it
was preregistered. Changing the model comparison metric after
the data are seen might be advisable if it turns out that the data
unexpectedly violate some assumption of the proposed analysis
and selection criterion. For example, if a researcher who preregis-
tered an analysis using a linear model and AIC discovers that their
data exhibit large interindividual differences, it would be defensible
for them to switch to an hierarchical model and Bayes factor.

Registered modeling reports. The advantage, especially in con-
firmatory research settings, of preregistering both models and their
method of analysis, suggests the desirability of making these dec-
larations in a systematic and routine way. Accordingly, we propose
a new article format for modelers called Registered Modeling Re-
ports, analogous to registered reports for experimental studies
(Chambers et al., 2015; Hardwicke & Ioannidis, 2018). In a Reg-
istered Modeling Report, researchers pre-specify models, data
collection mechanisms (whether experimental or observational),
and analyses prior to data collection; then they write up the In-
troduction and Methods sections—and, if possible and relevant,
the computer code to be used for model and data analysis—of an
article for a “Stage 1” submission. The role of peer review then is to
assess whether these specifications are principled and sufficient,
and whether the study design and planned analyses are of the de-
sired quality. A report that meets these criteria can be provisionally
accepted for publication, contingent on the researchers following
through with the registered model and methodology. After data col-
lection, the authors complete the manuscript with a “Preregistered
Results” section, an optional “Exploratory Analysis” section, and a
“Discussion” section.

We propose the Registered Modeling Report format in order to
insert the ideas of preregistration and transparency of modeling
practices directly into the publication process. This potentially has
a number of advantages. Most importantly, Registered Modeling
Reports may help improve the research itself, by allowing reviewers
to provide their expertise on experimental design and analysis
before resources are invested in the collection of data. Registered
Modeling Reports may also help streamline the review process
by preventing reviewers arguing for additional models or analyses
once the data have been collected.

While we think preregistration and Registered Modeling Reports
are important new ideas in model-based inference, the limits of their
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role should be understood. First, it is clear that not every modeling
study is suited to preregistration or Registered Modeling Reports.
Successful cognitive modeling almost always requires fine-grained
iterative model development, and this process is not well-matched
to a single preregistration or Registered Modeling Report. The
iterative process of model development and evaluation may well be
better documented during the research progress, and disseminated
as part of postregistration. Secondly, the preregistration of a model
and the way it will be used may not survive contact with data.
Violations of protocol should be documented, and deviating from
one’s preregistration plans should be permitted. Preregistration
should not prevent learning from the data at hand, and it does not
prevent carrying out valuable exploratory analysis.

What does not carry over. On the other hand, some of the rec-
ommendations that have followed the crisis of confidence do not
carry over to the standard practices of cognitive modelers. For
example, unless a modeling project depends critically on a null
hypothesis test and there is only one opportunity for data to be
collected, a priori power analysis does not serve a necessary role.
Similarly, since model construction does not necessarily rely on
the availability of large data sets, we do not believe rules of thumb
for sample sizes are useful considerations, especially if applied
post hoc.

Good practices after data are collected

Utilities in model evaluation. As empirical fields collect more
phenomena, they sometimes develop checklists or benchmarks
of qualitative properties that a good model should have. For ex-
ample, Oberauer et al. (2018) present a set of phenomenological
properties relevant to working memory research, and Epper and
Fehr-Duda (2018) present a set of seven regularities involving risk
taking and time discounting behavior. The “Context Effects in Deci-
sion Making” case-study box provides another concrete example
of a checklist. These sorts of checklists—that characterize models
in terms of discrete phenomena that are either present or absent,
with no strong statements about their magnitude—encourage a
falsificationist (Popper, 1959) perspective on model evaluation.
While this may be appropriate, it is easy for checklists to miss or
mischaracterize important aspects of empirical phenomena, and
so provide incomplete or inappropriate benchmarks. For example,
a checklist may neglect the role of individual differences, or ignore
the joint prediction of other relevant behavioral data. Hence, for
such multidimensional data it is appropriate to confirm the joint
occurrence of the phenomena, and to consider their sensitivity to
individual differences in the theory-building stage.

A checklist of observed phenomena may also set up inappropri-
ate expectations for future model building. If the evidence for some
phenomena on a list is in fact weak, but models are constructed
with extra complexity to account for those phenomena all the same,
the model is essentially overfit, meaning that it is overly attuned to
the specific features of the previous data sets and will hence suffer
in generalization tests. A conventional method of safeguarding
against overfitting would be to use a model comparison metric that
balances the quantitative fit of a model against the complexity of
the model. However, it is less clear how to compute quantitative fit
for a checklist of phenomena (but see Pitt, Kim, Navarro, & Myung,
2006).

Another standard modeling practice is to summarize the ability
of a model to capture patterns in the data through an omnibus
measure of goodness-of-fit, such as those considered in Figure 2.

Example 2: Context Effects in Decision Making

Decades of research have been devoted to understanding the
cognitive processes that give rise to context-sensitive behavior
when people make decisions between multiple alternatives de-
scribed by multiple attributes. The focus of this work has been
on understanding three classic context effects: the attraction
(Huber, Payne, & Puto, 1982), compromise (Simonson, 1989),
and similarity effects (Tversky, 1972). These effects describe
how preferences between two alternatives can change with the
introduction of a new third alternative, and have been shown to
occur in adults, children, monkeys, honeybees, hummingbirds,
and even slime molds (Latty & Beekman, 2010). The effects are
theoretically important because they challenge classical utility
models of decision making (Luce, 1959) by showing that the
relative preference for two options often depends on the utility
of another “decoy” option. There are at least a dozen different
computational models of these effects, with model evaluation
focused on exploring the range of parameter values that can
qualitatively produce the three effects. Typically, the modeling
goal is to find a single set of parameters that can account for all
three effects (e.g., Roe, Busemeyer, & Townsend, 2001; Usher
& McClelland, 2004). However, the three effects are too fragile
and subtle to serve as simple mandated checklists in this way.
Very few participants produce all three effects within a single
experiment, even though most people show the effects in iso-
lation (Trueblood, Brown, & Heathcote, 2015). There are also
large individual differences in the strength and co-occurrence
of the effects (Liew, Howe, & Little, 2016). Thus, simply relying
on a checklist of effects misses important aspects of the psy-
chological phenomena being explored, and mischaracterizes
the behavior for which an explanation is sought. A better ap-
proach is to evaluate detailed cognitive models of the decision
processes involved, testing the accuracy of their predictions
about the individual decisions that individual people make on
these tasks (Evans, Holmes, & Trueblood, 2018; Turner, Schley,
Muller, & Tsetsos, 2017).

A limitation of such an approach is that a single quantity may fail
to capture the full richness of information that the data provide for
evaluating a model, or the omnibus measure may be led astray
by small blips in the data and uninteresting violations of ancillary
assumptions.

One potential way to overcome the limitations of qualitative
checklists and overly sensitive omnibus fit measures is to consider
them as two end-points on a continuum of utilities (i.e., cost func-
tions) for “scoring” a model against data. Checklists operate at
a coarse resolution, measuring utility in terms of a few features,
while fit gives consideration to every data point. Between these
extremes lie utility functions that emphasize key qualitative points
of comparison between models and data, but continue to consider
all of the data in a fine-grained way. The “Absolute Identification”
case-study box gives a concrete example from psychophysics of
balancing qualitative and quantitative agreement between models
and data.

The more widespread use of utility functions has the potential to
strike an appealing balance between giving weight to qualitatively
important data patterns, while still measuring overall quantitative
agreement. Utilities to be used in confirmatory model evaluation
become part of the “rules of the game” and as such should be
determined—and preregistered—before the analysis is performed.

4 of 11 Lee et al.
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Example 3: Absolute Identification

Despite its apparent simplicity, the task of attaching labels to
stimuli varying on a single dimension (e.g., tones varying in
pitch) reveals a number of fundamental limits in human infor-
mation processing. For example, stimuli closer to the extremes
of the range of stimuli presented are more accurately labelled
than those in the middle. This well-replicated result, now called
the bow effect, has become a benchmark finding that most
researchers would agree any model of absolute identification
must capture (Murdock, 1960). Similarly, models are expected
to capture the relatively complex, but reliable, observed pattern
of sequential effects typically observed in absolute identification
studies. People show an assimilation effect which attracts their
response towards the stimulus presented on the previous trial
(Garner, 1953), but a weaker contrast effect that repels them
from previously presented stimuli (Holland & Lockhead, 1968).
Such benchmark findings have been used to evaluate a number
of psychological models (e.g., S. D. Brown, Marley, Donkin, &
Heathcote, 2008; Stewart, Brown, & Chater, 2005). Stewart et
al. (2005) take stock of the benchmark effects observed within
the absolute identification literature, asking whether different
models can produce the same qualitative patterns as observed
in data. Such an approach can be very useful, but they (and
most others) also evaluate the quantitative agreement between
the observed data and the predictions of models. Once the
required qualitative properties have been established, quantita-
tive fit remains important because of the additional challenge it
poses to models, especially when capturing data at the level of
individual participants.

Bookend models. Model comparison is inherently relative, and
there is no way to measure absolute adequacy. For an example
of the dilemmas this can cause, consider the case in which two
models are proposed for a complex data set. Suppose that both
models clearly fail in important ways, but it is still the case that one
model decisively outperforms the other. One reasonable perspec-
tive in this situation is that “the second model is better than the first,
but both are terrible, so what do we learn from the comparison?”
An alternative reasonable perspective is that “the fact that one
model is better means some additional insight might have been
gained, and that can aid future development.” At a minimum, the
worse performing model can now be rejected even though a good
alternative remains undiscovered.

One practical way to address this dilemma is to include, when
feasible, additional base-rate and catch-all models as “bookends.”
This involves augmenting the set of models under consideration
to include models that are much more parsimonious, and some
that are much more complicated, than the substantive models of
interest. If a model of interest outperforms the bookend models,
this suggests that its success in accounting for the data does not
come entirely from its parsimony or goodness-of-fit alone, but from
striking a suitable balance. In this sense, comparison to bookend
models provides a practical proxy for the assessment of absolute
model adequacy. The “Memory Retention Functions” case-study
box gives a concrete example of this use of bookend models.

Prediction and generalization. Beyond descriptive adequacy,
prediction and generalization are important additional approaches
for model evaluation. By prediction, we mean tests that measure
the success of a model in accounting for unobserved data from

Example 4: Memory Retention Functions

Models of memory retention characterize the change in proba-
bility of recall of an item or episode from memory as a function
of time. Many functions, including various power functions and
exponential decay functions, have been proposed to model
this relationship (e.g., Rubin, Hinton, & Wenzel, 1999). The
bookend approach would add to this set of serious theoretical
competitors something like a null model that assumed memory
for items was constant with respect to time, and a saturated
model that allowed a free parameter for the probability of recall
at every measured time point. The null model is presumably far
too restrictive, and will under-fit the data. The saturated model
is presumably far too complex, and will over-fit the data. Thus,
for a theoretical model like a power or exponential function to
be a serious contender, it should out-perform both of these
bookends.

the same task. By generalization, we mean tests that measure
the success of a model in accounting for unobserved data from a
different but related task. This difference between prediction and
generalization is emphasized by Busemeyer and Wang (2000),
who argue for the merits of generalization tests. Successful predic-
tion and generalization show a model to be robust, in the sense
that the model is not over-emphasizing any idiosyncratic features
of a particular set of data.

Some practices for prediction tests are well established, like
cross-validation and accumulative prediction error (Shiffrin et al.,
2008; Wagenmakers, Grünwald, & Steyvers, 2006). There are
fewer examples of generalization tests in cognitive modeling (but
see Criss, Malmberg, & Shiffrin, 2011, Guan, Lee, & Vandekerck-
hove, 2015, and Kılıç, Criss, Malmberg, & Shiffrin, 2017, for some
recent examples). The “Serial Position Effects in Free Recall” case-
study box provides one concrete example. Generalization tests
should become more widespread as psychological modeling aims
to demonstrate its robustness. The ability to make accurate pre-
dictions about what will happen in new and different psychological
circumstances is a compelling way to demonstrate the explanatory
power and range of applicability of a theory.

Other approaches related to prediction and generalization are
emerging in contexts like machine-learning competitions. An early
example was the Netflix competition (Bell, Koren, & Volinsky, 2010),
which provided data on the ratings viewers gave to movies they
watched, and tested the ability of algorithms to predict the ratings
for withheld data. The final million-dollar prize was awarded for
the first algorithm able to make a 10% improvement over Netflix’s
own recommendation algorithm at the time. For the most part, the
algorithms submitted to the competition were developed using sta-
tistical and machine-learning methods. We believe there should be
a role for cognitive models in this competitive context. In the case
of the Netflix competition, teams predicted human judgments of
aesthetic stimuli – a quintessentially behavioral question common
in the cognitive sciences. Contemporary data science competitions
might benefit from, as components of a good entry, some measure
of psychological modeling. For example, recent Kaggle competi-
tions2 include the “Dog Breed Identification Challenge” (determine
the breed of a dog from an image), the “Toxic Comment Classifica-
tion Challenge” (identify and classify inappropriate comments in an
online setting), and the “Store Item Demand Forecasting Challenge”
(predict three months of item sales at different stores). These Kag-

2https://www.kaggle.com/competitions
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Example 5: Serial Position Effects in Free Recall

The serial position curve in free recall is one of the most robust
findings in the study of memory. Items presented near the be-
ginning and end of studied lists tend to be recalled better than
items in the middle of the list, when there is no requirement to
recall the items in order. The quantitative details of this qualita-
tive regularity, however, depend on details of the task, including
how many items are studied and the time interval between their
presentation (Murdock, 1962). Shiffrin et al. (2008) present
a case study of how a model of free recall can be evaluated
in terms of its ability to generalize across these conditions.
They focus on a hierarchical extension of the SIMPLE model
(G. D. A. Brown, Neath, & Chater, 2007), using data from six ex-
perimental conditions to infer model parameters. The extension
enabled predictions about the appropriate parameterization of
the model in three extra conditions involving set sizes and pre-
sentation intervals that were different from those used to make
the inferences. These predicted parameters, in turn, were used
to generate the serial position curves that the model predicts.
In effect, the extension served to broaden the model’s account
of free recall from the observed experimental tasks to new ex-
perimental tasks, so that evaluation against data from the new
tasks would provide a strong test of the model.

gle competitions seem likely to benefit from psychological models
of vision, language, and decision making, respectively. There are
also contemporary competitions, such as the Choice Prediction
Competition3, that are more explicitly focused on psychological
theories and cognitive modeling challenges. A key element of all
of these competitions is that the requirement of genuine prediction
has to be carefully implemented in the assessment of competing
models.

Exploratory analyses and postregistration. However a model
is evaluated, the evaluation should ideally be augmented with
exploratory analyses. Perhaps the most common exploratory anal-
ysis involves the discussion of model misspecification. All models
are misspecified, and modelers often work through a sequence
of models before arriving at the one ultimately presented – trying
this functional form and that, allowing for individual differences or
trial-to-trial effects, adding auxiliary assumptions for a new study
design, and taking what was an auxiliary assumption and building it
into a core assumption. Understanding the reasons for steps taken
and the nature of the residual misspecification provides crucial
information for guiding future model development that often goes
unreported. In other words, knowing what did not work in model
development and what still does not work in the final model, should
be transparently reported to the field.

Model development is a creative activity that often proceeds in
this incremental and exploratory fashion. A model is forged from
data through a process of abductive reasoning, and it undergoes
multiple cycles of empirical testing and adjustment over time.

In exploratory model development, we believe there is a useful
expanded role for what we call “postregistration” documentation.
Postregistration is part of an ongoing research effort and involves
keeping an “activity log” documenting every model alteration tried
during the study. This type of activity log is essentially a modeling
lab notebook, not unlike a traditional lab notebook (Noble, 2009),

3https://cpc-18.com/

which is updated incrementally as the exploratory modeling pro-
ceeds. Modeling notebooks can be created using existing software
tools such as Jupyter or Rmarkdown, and they can be made public
at the time of publication or even as the research is being done. In
a preregistered confirmatory setting, postregistration could focus
on non-core modeling results, possibly in the published article, but
possibly only in supplementary material. In either case, postregis-
tration provides a mechanism for avoiding the modeling file-drawer
effect, in which attempts at model development that fail are never
made public (Rosenthal, 1979). The overarching aim of these
additional reporting considerations is to inform the field, and to
enhance the understanding of the model.

Good practices throughout psychological modeling

Modelers should always endeavor to make their models available
(Baumgaertner, Devezer, Buzbas, & Nardin, 2018). The motivating
goal of ensuring availability is to preserve the rights of others to
reach independent conclusions about model-based inferences. A
minimum standard, then, is to provide accessible modeling details
that allow a competent person in the field to reproduce the results.
This is likely to include mathematical and statistical description,
an algorithm or pseudo-code, user documentation, and so on.
Providing these details in a sufficiently precise form makes a model
available, and means it is likely to be used and understood more
broadly than by a specific researcher or a single lab.

Making modeling robust. Stephen Jay Gould (1996) pointed out
that mistakes that favor a researcher’s preferred conclusions tend
to go uninvestigated, and so tend to remain (Rouder, Haaf, & Sny-
der, in press). A consequence of this “psychology of errors” is
that mistakes in model implementation tend to be biased in favor
of the model – that is, the results are not robust to who is per-
forming the analysis. In computer science there are established
“robust coding” techniques that can help researchers address their
unconscious biases, including independent implementation and
test-driven development (Beck, 2003). Nevertheless, making mod-
eling robust to error is a challenging task. It is a special case of the
more general challenge of establishing the robustness of model-
based findings. We discuss one established modeling practice
for increasing robustness in modeling, as well as two more recent
ideas.

One established practice involves parameter recovery studies.
These studies test the correctness of the computational imple-
mentation of a model through recovery studies that fit a model to
data simulated from that model (Cook, Gelman, & Rubin, 2006;
Heathcote, Brown, & Wagenmakers, 2015). The usual assumption
is that it is desirable for a model to infer the parameter values that
are known to have generated the simulated data. Model recovery
studies can provide a way to understand the properties of a model.
In particular, they can help diagnose issues like (weak) identifia-
bility with respect to the type and amount of information likely to
be available. These diagnoses in turn can help guide the deci-
sions involved in experimental design. An extreme form of using
models to guide experimental design involves the growing area of
“optimal experimental design,” in which the predictions made by
competing models are used to choose the conditions presented
in an experiment, or even the stimuli presented on a trial-by-trial
basis (Cavagnaro, Pitt, Gonzalez, & Myung, 2013; Zhang & Lee,
2010).

A more recent idea for combating errors involves the use of
blinding in modeling (Dutilh et al., 2017; MacCoun & Perlmut-
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Example 6: The Worst Performance Rule

People with higher working memory capacity tend to respond
relatively more quickly in elementary perceptual tasks, such
as deciding whether a stimulus array contains more white or
black dots (Jensen, 2006). According to the worst performance
rule, the worst performance in these simple tasks is more pre-
dictive of high-order cognitive ability than best performance
(Baumeister & Kellas, 1968). The evidence for this rule is
that higher response time quantiles (i.e., slower responses)
correlate more strongly with working memory capacity than
lower response time quantiles (e.g., Unsworth, Redick, Lakey,
& Young, 2010). Ratcliff, Schmiedek, and McKoon (2008) have
argued that the worst performance rule can be explained by
a drift diffusion model of the time course of making simple
decisions. In particular, the diffusion model account of the
worst performance rule posits that the same general process-
ing speed—the “drift rate” parameter—facilitates performance
in both simple perceptual tasks and complex cognitive tasks.
Dutilh et al. (2017) tested these modeling claims using a con-
firmatory yet flexible two-stage modeling strategy. In the first
stage, the modeler was provided with the choice response
times and a randomly shuffled version of the working memory
measurements. In this way, the critical correlation between
person-specific working memory scores and person-specific
choice response times was withheld from the modeler. Af-
ter all of the modeling decisions were made, such as outlier
exclusion and transformations, the analysis code was made
public on the Open Science Framework. In the second stage,
the working memory scores were unshuffled, and the analysis
script was applied to the data to evaluate the preregistered
hypotheses. The authors concluded that the results provided
evidence against the worst performance rule. By blinding the
modeler to the mapping between the key variables, in the form
of the drift rate parameters and working memory scores, the
two-stage analysis strategy allowed for flexibility in modeling
while ensuring that the modeling decisions were not driven by
expectations about the outcomes.

ter, 2017). The core requirement of blinded modeling is that the
modeler is provided with most of the data, but that the data are
scrambled or delabeled to make it impossible to determine if the
outcome is desirable or undesirable with respect to a theory or
model. Blinded modeling alleviates the psychology-of-errors bias,
and thus provides a mechanism to increase confidence in the use-
fulness of model-based inference. In particular, it provides a strong
test of selective influence (Voss, Rothermund, & Voss, 2004). “The
Worst Performance Rule” case-study box provides an example of
using blinding.

A model-based way of guarding against errors involves testing
the robustness of results to small variations in the model definition.
Most modeling applications in psychology involve using only one
model to make inferences from data. It is the case, however, that
the most important conclusions should be robust to the non-core
details of the model. In the same way that we test the sensitivity
of our conclusions to irrelevant variations in the priors, we can
test their sensitivity to irrelevant variations in the likelihood (Farrell
& Lewandowsky, 2018; Lee, 2018). This practice is sometimes
called likelihood profiling. The “Predator Avoidance and Courtship
in Butterflies” case-study box provides an example in which both
priors and likelihoods are tested for robustness.

Example 7: Predator Avoidance and Courtship in Butter-
flies

Finkbeiner, Briscoe, and Reed (2014) model approach-and-
avoidance behavior (in predatory situations) and courtship be-
havior (in mating situations) in butterflies. They use Bayesian
methods to implement models and evaluate them against the
behavioral data. As part of testing the robustness of the mod-
eling conclusions, they examined a set of variations on the
original model, particularly with respect to the modeling as-
sumption made about individual differences between butterflies.
Different prior distributions on the level of variability are sys-
tematically tested, together with different assumptions about
the shape of the distribution that characterizes individual differ-
ences. The observation that the important modeling results are
robust to these changes suggests that they come from the data
and core theoretical commitments of the model, rather than
from the more arbitrary ancillary assumptions.

A more extreme version of this robust modeling approach uses
multiple different models that formalize the same psychological
theory (Dutilh et al., 2018). Analogously to the “many analysts”
approach in data analysis, the goal of this approach is to test the
variation in findings arising from different researchers tackling the
same problem using different reasonable methods (Silberzahn et
al., 2018). If different models converge on the same findings, it
suggests the models capture the theory and the inferences are
robust. If the results do not agree, rich diagnostic information is
provided to investigate the models and psychological phenomena
involved. We believe this crowd-sourced approach to evaluating
the robustness of findings is an important emerging capability,
facilitated by the increasing speed and ease of distributed scientific
interaction.

More complete modeling. Exploratory and confirmatory methods
can and should be used at the same time, for the same research
question, and even for the same model and data. The exploratory
part of a confirmatory study allows the data to inspire further model
development. The exploratory evidence provided by current data
can be measured for any model, including one provided by the data.
Results of exploratory analysis then inspire future confirmatory
tests using independent data. It is critical, however, that exploratory
evidence should not be misinterpreted as confirmatory evidence if
the model was not anticipated before the data were seen.

We believe that one useful way to think of the distinction is
in Bayesian terms. The canonical Bayesian approach to model
selection is based on the Bayes factor, which is a ratio expressing
how much evidence the data provide for one model over another
(Kass & Raftery, 1995; Lee & Wagenmakers, 2013, Chapter 7;
Vandekerckhove, Matzke, & Wagenmakers, 2015). The Bayes
factor can be thought of as the change from prior model odds to
posterior model odds, as in the following equation:

posterior odds︷ ︸︸ ︷
p (Mm | y)
p (Mg | y) =

Bayes factor︷ ︸︸ ︷
p (y | Mm)
p (y | Mg) ×

prior odds︷ ︸︸ ︷
p (Mm)
p (Mg) . [1]

In a confirmatory research setting, claims are sought about the
relative probability of models, based on the data. These are claims
about posterior odds, and thus require both prior odds and the
Bayes factor measure of evidence. Thus, following the logic of
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Equation 1, it is critical that the prior odds be declared (i.e., prereg-
istered) before the critical data are seen. Alternatively, one might
conduct a sensitivity analysis examining the range of prior odds for
which the data lead to high posterior odds, thereby giving a lower
bound on the amount of prior skepticism that would be required to
negate the evidence in the data.

In an exploratory research setting, however, models are often
inspired by the collected data. In this case, it is difficult to make
claims about the prior probabilities of models. It does remain
reasonable, however, to measure the evidence the current data
provide for the newly-developed model, relative to other established
models. This is what is measured by the Bayes factor, and it is
validly calculated for any model with respect to any data.

From this perspective, what sets apart the exploratory settings
is the need for extra care in expressing the knowledge claims. It
is logical to say “these data are this many more times likely to
arise under this model than that model.” It is not logical in the
exploratory setting to say “this model is this many times more likely
than that model, based on the data.” The former statement is
appropriately cautious: it expresses only the strength of evidence
and does not involve prior probabilities on the models. The latter
statement is inappropriately bold: it expresses strength of belief
and would have required prespecified priors on the models. After
all, if a model was only inspired by examination of the data, it
seems likely that its (implicit) prior probability was not high, and so
the (implicit) posterior probability of the model also is not high. In
the absence of prior probabilities, exploratory model development
should restrict knowledge claims to those consistent with the Bayes
factor interpretation of evidence.

Solution-oriented modeling. Ultimately, the test of the useful-
ness of a theory or model is whether it works in practical ap-
plications, and people have confidence in models that can be
demonstrated to work. Applications of established models will
often combine exploratory and confirmatory approaches. Verifying
that the data in the domain are well captured by the model provides
a test of model robustness and generalizability. Forcing a model to
tackle real-world problems encourages solution-oriented science
that may inspire future model development and evaluation (Watts,
2017).

In this vein, an important class of applied models come in the
form of measurement models. The goal of these models is not
necessarily to provide detailed accounts of cognitive phenomena,
but to provide a useful “close enough” model that can infer context-
relevant features of a person, stimulus, task, or some combination
of all of these (Marsh, Morin, Parker, & Kaur, 2014). Measurement
models have been historically important as the underpinning of
the field of psychometrics and psychological assessment, and are
of growing importance with real-world applications in the emerg-
ing field of cognitive data science. The “Cognitive Psychometric
Models” case-study box provides an example of this sort of applied
measurement modeling.

Conclusion

Psychology’s crisis of confidence provides a challenge to the
broader field, but it also provides an opportunity to improve psycho-
logical modeling in particular. In this article, we have attempted to
identify a number of these opportunities, and highlighted emerging
modeling practices and useful new ideas for psychological model-
ing. In particular, we have tried to highlight four key ideas that we
offer as take-home recommendations.

Example 8: Cognitive Psychometric Models

A recent advance in the development of measurement models
is the practice of cognitive psychometrics, in which generic
models of cognitive processing are applied in a measurement
context (Batchelder, 2010). In one of the earliest such projects,
Gerrein and Chechile (1977) used a model of a working-
memory task to study the dynamics of alcohol-induced am-
nesia. The model was a multinomial processing tree, which
is essentially a decision tree that the participant in a task is
assumed to traverse in order to indicate a response. The model
consisted only of a few chained probability statements and
was not intended to test one or another hypothesis directly.
Instead, it served mainly to restate the observed data in terms
of process parameters rather than counts. The conclusions of
interest—that alcohol intoxication impairs not only storage but
also retrieval in working memory—were drawn based on pat-
terns of change of these parameters across participant groups.

First, preregistering models, the predictions they make, and
how they will be evaluated, is likely to improve the confidence
the field has in results and conclusions of confirmatory model
tests. Secondly, making models available and post-registering
exploratory model development increases transparency and could
speed model development. Thirdly, undertaking detailed evalua-
tion of models improves the understanding of their strengths and
weaknesses. Finally, we believe that Registered Modeling Reports
could incentivize the field to test models that make risky predic-
tions, providing strong tests of theory and potentially rapid progress
(Platt, 1964).
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