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Diffusion processes are commonly used in the modeling of time series that exhibit stationarity and Markovianity. However, those two properties
do not guarantee that a diffusive process is sufficient for the time series. In this paper, we develop a test for the sufficiency of a diffusion
process for an observed time series. To develop the test we capitalize on the Kramers—Moyal (KM) expansion: a Taylor expansion of the
integral form of the master equation that describes Markov continuous-time processes. In the idealized case, if the observed data indeed
arise from a true diffusion process, then the KM expansion should truncate naturally after the second term. In theory, this means that any
higher-order (> 3) KM coefficients should be zero. However, in practice, the discrete nature of measurement introduces artificial higher-order
KM coefficients, even when the underlying process is truly diffusive. Nonetheless, for genuinely diffusive systems, it is expected that the
sampling distribution of a statistic associated with higher-order coefficients will be different than non-diffusive ones. This is a viable avenue for
testing the appropriateness of a diffusion model given an observed time series. We take advantage of this and propose a meaningful statistic
that could inform whether or not a diffusion model is sufficient for a given time series. We then build a test that involves reconstructing the
diffusion equation to generate surrogate paths, yielding a bootstrap distribution against which the observed statistic could be compared. We
evaluate the sensitivity and selectivity of the proposed test in Monte Carlo studies.
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In time series analysis, it is common practice to draw inferences
about a postulated continuous-time model on the basis of discretely
sampled observations. This introduces a problem since identifying
continuous-time models from discrete-time data is subject to the so-
called aliasing phenomenon: distinct continuous-time processes
may look identical when sampled at regular time intervals (Ait-
Sahalia, 2002). Nevertheless, it is common for modelers to use a
parsimonious diffusion process to model time series data.’

For example, in neuroscience the assumption of white noise
for single-neuron activity implies a diffusion process (Vellmer &
Lindner, 2021). Certain exploratory methods that consider patterns
of EEG under anaesthesia (Bahraminasab, Ghasemi, Stefanovska,
McClintock, & Friedrich, 2009) and in epileptic dynamics (Prusseit
& Lehnertz, 2007) implicitly rely on assuming a diffusion model.
In the field of affective dynamics, diffusion processes have been
used to model affective states of individuals (Oravecz, Tuerlinckx, &
Vandekerckhove, 2009; Oravecz & Vandekerckhove, 2020). They
are also used to model heart rate fluctuations and cardio and res-
piratory interactions (Ghasemi, Sahimi, Peinke, & Tabar, 2006;
Ghasemi, Peinke, Reza Rahimi Tabar, & Sahimi, 2006; Smelyan-
skiy, Luchinsky, Stefanovska, & McClintock, 2005), as well as
prices of assets in finance (Detemple & Rindisbacher, 2011) and
even turbulence in earth sciences (Tutkun, 2017; Peinke, Tabar, &
Wachter, 2019).

A diffusion process is a Markov process with continuous sample
paths (Ait-Sahalia, 2002). Markov process here means that the
current value only depends on the most immediate past value and
not on earlier observations. Since the discrete nature of measure-
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ment limits one to having only discretely sampled data, there is
a need for a testing procedure that can help determine whether
the underlying model that gave rise to the data is truly diffusive
— this is informative of the kind of variation present in the system
of interest. Further, it helps in avoiding model misspecification
— specifically, fitting diffusion process to a time series when the
variation exhibited in it is not due to a diffusion process.

In the development of our testing procedure, we will be able to
capitalize on an important theoretical result known as the Pawula
theorem (Pawula, 1967). This theorem, which we explain below,
describes a particular regularity in data resulting from diffusion
processes. Our proposed testing procedure is based on these
regularities, which allow us to develop a meaningful statistic for
the sulfficiency of diffusion for an observed time series. Then we
build a test that uses a reconstruct-then-bootstrap strategy The
comparison of the test statistic to its expected distribution under
the assumption of “pure diffusion” allows us to decide whether an
observed time series can be sufficiently explained by diffusion.

The outline of the paper is as follows. In Section 1 we intro-
duce the notation and the mathematical prerequisites for building
the test. We detail the form of the diffusion processes that are
within the scope of the test. We introduce the Pawula theorem
and Kramers-Moyal expansion and show how they are necessary
for the test construction. In Section 2, we illustrate how the test
statistic is derived and further enumerate the steps taken in the test.
Section 3 describes a Monte Carlo study we conducted to evalu-
ate the sensitivity and selectivity of the test. Section 4 contains
examples of applications of the new test on two datasets — self-
reported arousal level time series of participants in a mobile-health
study and EEG recordings from pre-surgical epilepsy patients. In
Sections 5 and 6 we discuss and conclude.

Notation. Before we formally introduce diffusion processes and
the necessary mathematical results from which we ground the
construction of the test, we review the notation used throughout
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Fig. 1. An example of a path of a diffusion process of the form: dxy = —0.1z.dt +
0.2dW,. The characteristic attribute of diffusion processes are the random perturba-
tions that make the path non-smooth.

this paper.

A stochastic process can be viewed as a collection of random
variables indexed by a variable such as time. It is therefore conve-
nient to think of these random variables as functions of the indexing
variable. In this work, we use time t as the indexing variable and =
as the random state variable. The notation x(¢) denotes the state
x at time t¢; for brevity, we will sometimes write x; to mean the
same.

The term dx; represents an infinitesimal increment of the pro-
cess. Expressions such as a(x:) or b(x:) indicate that a and b are
functions of the state variable x;. The differential dt denotes an
infinitesimal change in time, while dWW; denotes an increment of a
Wiener process, where dW; follows a Gaussian distribution with
mean 0 and standard deviation dt: dW; ~ N(0, dt).

The probability density of = at time ¢ is written as p(z, t). lts

partial derivative with respect to time is written as %, and

(Z-) denotes the n-th partial derivative with respect to z. Su-
perscripts such as =" indicate powers, while parentheses such as
+™ indicate the n-th order of a quantity—for example, K™ (x;)
denotes the n-th conditional moment which is a function of the
state variable ;.

Square brackets, [-], are used to group terms that go together,
and finally angle-bracket notation (-) denotes the expectation oper-

ator.

Diffusion processes. Diffusion processes describe the random
evolution of systems over time, typically resulting from the cumu-
lative effect of many small, random perturbations such as small
impacts of molecules on pollen particles that then appear to move
about erratically (Einstein, 1905; Uhlenbeck & Ornstein, 1930;
Wiener, 1923). These processes are characterized by continuous
but non-differentiable paths typically depicted as noisy random
walks (Boninsegna, Niske, & Clementi, 2018).

Figure 1 illustrates an example path from a diffusion process
with mean-reverting properties. The path exhibits random fluctu-
ations as it approaches the mean forward in time. It is this noisy
looking behavior that is a signature of diffusion processes.

Langevin representation. Formally, the diffusion process is best
known as a description at the level of individual paths by the
stochastic differential equation (SDE):

dzy = a(xy) dt + b(xy) dWy, [1]

where a(z) dt is the drift term representing the deterministic com-
ponent of change and b(xz.) dW; is the diffusion term responsible
for the microscopic random perturbations. In the diffusion term,
b(z.) describes the magnitude of random fluctuations. It scales
the increment dt of the Wiener process dW. Similar to b(z:), the
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term a(z:) may be thought of as a scaling factor of the determinis-
tic change in time, dt. Both a(z:) and b(z:) are functions of the
state variable ;. We note that these scaling factors could made
time-varying—meaning that they could be made explicit functions
of time, ¢—but in this paper we restrict our discussion to only those
that are functions of the endogenous state variable x;.

This SDE is commonly referred to as the Langevin equation
and serves as a microscopic description of the diffusion process
(Tabar, 2019). Through the SDE, we gain a picture of how the
state, z, of a stochastic system changes over time due to the
change of increments, dz:, over time.

Fokker-Planck representation. Another way in which diffusion
processes can be described is through the evolution of the proba-
bility density: p(x, t). Here, p(z, t) corresponds to the likelihood of
the system being at state = at time ¢ (Paul & Baschnagel, 1999).
Meaning, instead of describing how the state of a stochastic system
changes over time, one could instead describe how the stochastic-
ity of the system’s state changes over time. For diffusion processes,
this is characterized through the Fokker-Planck equation, which
shows how p(zx, t) changes over time:

apgz’ t) =— (%) [a(ze) p(z, t)] + (881;2> [552(1‘1&)17(37:75)
(2]

Equations 1 and 2 are equivalent descriptions of the diffu-
sion process — it is possible to derive one from the other (Paul
& Baschnagel, 1999). Later, we will see that the test we aim to
develop will rely heavily on this equivalence.

Kramers-Moyal expansion and the Pawula Theorem. The
Fokker-Planck equation (Eq. 2) tells us how the probability den-
sity of a diffusion process evolves over time. Diffusion processes
are a subclass of Markov processes. The evolution of the prob-
ability density of the broader class of Markov processes can be
represented through the so-called Kramers—Moyal (KM) expansion.
KM expansion is derived with a Taylor expansion of the integral
form of the master equation that describes Markov continuous-time
processes (Gorjao & Meirinhos, 2019).

The KM expansion is a partial differential equation that is first-
order in time and infinite order in the state variable. It is expressed
as an infinite series involving derivatives of p(z,t), where each
term is weighted by a corresponding coefficient (Tabar, 2019).
Formally, the KM expansion takes the form:

Tt =X (o) U]

n=1

where:
» p(z,t) is a probability density function describing the likeli-
hood of state x at time t;
« D™ (z;), with n € N, is the n-th KM coefficient, defined as:

_ L

D™ () = = lim ~ K™ (z,); 4]

’fl' T—=0 T
and

« K™ (z,) is the n-th conditional moment, defined as:

x(t)>
= / [z(t+7)—2z@)]" (5]

xplx(t+71),t+7|x(t),t)de(t+71)

K@) = (o(t+7) -]
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Here, 7 corresponds to the sampling interval. These condi-
tional moments, K(">(a:t), are functions of the conditioning
variable  (¢). Consequently, the KM coefficients, D™ (),
are also functions of z (t).

The KM expansion is helpful since it describes how the stochas-
ticity of a Markov process evolves over time. One drawback is
that it is an infinite-order PDE and in real world applications it
is infeasible to work with infinite sum of terms. Fortunately, the
Pawula theorem provides that there are only three possible cases
for the KM expansion (Tabar, 2019): Either (1) the KM expansion
is truncated after the first term, implying that the process under
study is deterministic; or (2) the expansion is truncated after the
second term; or (3) the expansion must retain all terms and cannot
be truncated.

The truncation at the first term is equivalent to having an ordi-
nary differential equation (ODE) as a description for how a system’s
state changes over time. In this description, only the elapsed time,
dt and some function of the current state, a(x:), determine the suc-
ceeding values in the process. The truncation of the KM expansion
at the second term is due to the observation that if any even-order
coefficient beyond the second vanishes (e.g., D¥(z;) = 0), then
it is consistent to set all higher-order terms with n > 3 to zero
(Tabar, 2019). Hence, in the case that D™ (z,) = 0, the expan-
sion reduces to:

Op(x,t) 0]

DO (e, 0)] + 2

ot ox

[DP () pla, 1)]
(6]
The last case is the only other possibility since premature trunca-
tion at any other term will lead to a mathematical contradiction,
namely that p(z, t) is not guaranteed to be a valid density.
Equation 6 is precisely the Fokker-Planck characterization of
diffusion processes in Equation 2. This equivalence implies that
for diffusion processes, there is a relationship between the first
two KM coefficients and the drift and diffusion terms in Equation 1.
Specifically:
DY (z,) = a(wy)
7
D(2)(xt) _ %b2($t) [7]

Hence, we can rewrite the SDE in terms of the first and second
KM coefficients to yield:

dzy = DY (2,) dt + /2D () dWs,

This tells us that the first two KM coeficients are sufficient in charac-
terizing diffusion processes and higher-order (> 3) KM coefficients
are not needed in its microscopic description.

Testing the sufficiency of diffusion. Based on the implications
of the Pawula Theorem for the KM expansion, among Markov
processes, one could develop a test to assess the sufficiency of
diffusion by checking whether for a given time series, any of its
higher-order KM coefficients (> 3), such as D<4>(:1:t), are negligi-
ble.

Characterizing the hypothesis space. We build a diffusion suf-
ficiency test based on this observation and borrow logic from the
Neyman-Pearson (NP) hypothesis testing framework.? A funda-
mental element of the test construction is the observation that if an
observed time series is already Markov and exhibits stochasticity,
then there are only two possibilities: either it is diffusive (corre-
sponds to the truncation of the KM expansion at the second term)

(8]

2While we would prefer it, the computational complexity of our test is not conducive to a fully Bayesian
implementation.
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or it is not (meaning all terms in the KM expansion are needed).
Hence, we can partition the hypothesis space into a null, Ho, and
alternative hypothesis, 1, and say that given a time series, w, it
belongs either in:

w is a path NOT sufficiently described }

w is a path sufficiently described

Ho: wello= { by a diffusion process specified in Eq. 1

or

Hiswe = { by a diffusion process specified in Eq. 1

The strict binarization of the hypothesis space into two parts
is different from the usual binarization of hypothesis that happens
in the traditional NP framework. In the traditional NP framework,
the null hypothesis (e.g. “no effect”) is often reduced to a precise
condition such as testing whether a parameter (e.g. a regression
coefficient) satisfies 8 = 0. However, in practice, the notion of “no
effect” may more accurately correspond to a small effect such as
|B] < e where € > 0, this subtlety is not easily captured by the
traditional NP framework (Etz, Haaf, Rouder, & Vandekerckhove,
2018; Etz, Goodman, & Vandekerckhove, 2022).

By contrast, strictly partitioning the hypothesis space into “is it
diffusive” and “is it not diffusive” is supported by the implications of
the Pawula theorem: if an observed time series is already Markov
and exhibits stochasticity, either we have something that is entirely
diffusive or not. This binarization is consistent with the notion of an
M-closed world in Bayesian model comparison (Bernardo & Smith,
2009), where the set of models under consideration is assumed
to include the true data-generating process. Unlike the more com-
mon M-open setting, where the truth may lie outside the chosen
family of models, the structure imposed by the Pawula theorem
ensures that our candidate space (“diffusive” vs. “non-diffusive”) is
exhaustive and mutually exclusive, and thus the inference problem
can legitimately be posed in M-closed terms.

Constructing the test statistic. The next important step is to
come up with a test statistic able to arbitrate between the two
scenarios. We note that we do not have a good characterization
of the entirety of the space that is not diffusive. Therefore, in
building a test for the sufficiency of diffusion, we can only capitalize
on what we know about diffusive processes: Its higher-order KM
coefficients (> 3), such as D™ (x;), are effectively zero.

A complication that arises is that KM coefficients have a known
estimation bias in samples with finite temporal resolution. Even for
a purely diffusive process, finite-time discretization introduces a
coarse-graining effect: unobserved small-time-scale fluctuations
distort the increment distribution, generating spurious higher-order
Kramers—Moyal coefficients (Tabar, 2019). The implication is that,
even if something were truly diffusive, merely checking whether
any of the higher-order KM coefficient is zero (or close to zero) is
insufficient.

In addition, there is ambiguity in determining what constitutes
“close to zero,” which can introduce subjectivity into the decision-
making process. Further, since the KM coefficients are functions
of the state variable x;, this evaluation of whether it is “close to
zero,” must be carried out across the entire domain of z;, rather
than at a few selected points.

For these reasons, we construct the test statistic to be the
distance of the fourth KM coefficient, D¥ (x,), from zero. This
test statistic measures the degree of departure from expected
behavior if the time series were truly generated by a diffusion
process.
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Borrowing logic from the NP framework, we now need to con-
struct the expected distribution of this test statistic under the null hy-
pothesis. Then we will compare the observed test statistic against
its expected distribution. In our case, the null distribution will indi-
cate which values of the test statistic values we should expect if
the assumption of diffusion holds. Then the arbitration will simply
amount to checking whether the observed statistic falls reasonably
within its null distribution.

Method

In this section, we detail the specifics of the test construction.
In designing the test, we first construct a test statistic from the
observed time series that captures whether data can be reasonably
explained by a diffusion process. Then we describe what we expect
about the distribution of the test statistic under the null hypothesis,
Ho. Lastly, we describe the reconstruct-then-bootstrap approach
used in approximating the null distribution of the test statistic and
discuss the decision rule for the test.

L%-norm of DY (z,) as k-statistic. We choose the fourth KM
coefficient in building the test statistic. Since KM coefficients are
based on conditional moments, the fourth conditional moment cap-
tures the heaviness of the tails of the probability density function.
Intuitively, heavier tails are associated with greater discontinuities
or non-diffusive variation. Additionally, the proof of the Pawula
theorem involves establishing an inequality in which all even-order
KM coefficients (excluding the second) are bounded above by a
multiple of the fourth KM coefficient (Tabar, 2019). Therefore, as-
surance that DY (z+) is close to zero also indirectly suggests that
all higher even-order KM coefficients are negligible.

Analyzing D () directly can be cumbersome, primarily be-
cause it is a function defined over a domain rather than a single
scalar value. This functional nature complicates the process of
drawing conclusions, particularly when the goal is to make a deci-
sion based on the sufficiency of diffusion. To simplify such decision-
making, we can reduce the problem to a scalar comparison by
evaluating a single summary statistic rather than a function in its
entirety.

If we are interested in testing whether diffusion is sufficient,
and we know from theoretical considerations that D™ (z:;) should
be identically zero under conditions of sufficient diffusion, then a
natural approach is to measure how far D<4)(mt) deviates from
zero. We can take a common distance measure, in this case the
L2-norm. This leads us to consider a scalar test statistic that
becomes a meaningful indicator of deviation from the expected
behavior. This approach is not uncommon, having previously been
used in creating a two-samples test for functional data (Zhang,
Peng, & Zhang, 2010). From here on, we call this statistic the
k-statistic:

k=D ()|2 0]
Doing this reduces comparison of functions to a scalar test which
aids interpretability and a more manageable decision process.

Since time series in practice are finite, then a discrete approxima-
tion of « is:

m 1/2
k= DD (@)]l2 ~ (Zﬂ“(xm?) [10]
t=1

Sampling distribution of «-statistic under the assumption of
diffusion sufficiency. To operationalize the notion of diffusion
sufficiency, we have defined a scalar summary statistic—referred
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to here as the x-statistic—that quantifies the distance of the empir-
ically estimated fourth-order KM coefficient, D) (z;), from zero.
Under the assumption that the process is truly diffusive, the true
value of D¥(z,) should be identically zero.

A key insight is that the behavior of x-statistic under a truly
diffusive process should be consistent with the stochastic proper-
ties of the first two KM coefficients, D) (z;) and D (x;), which
are assumed to be sufficient for characterizing the dynamics of a
diffusion process. In particular, if the underlying process is indeed
diffusive, then repeated sampling (e.g., simulations) using only
DW (z,) and D@ (z,) to generate surrogate paths should yield a
sampling distribution for the x-statistic that is statistically similar to
the sampling distribution obtained from the observed data.

That is, we expect consistency between the distribution on the
LHS and RHS:

D(x | DV (x1), D (21), 7, Ho) = D(k | DM (1), D (1))
(11]
Here D(-) denotes the sampling distribution and . indicates
the null assumption that the process is diffusive. The LHS is the
sampling distribution of , given estimates of the first two KM coef-
ficients and under the assumptions that (a) the null hypothesis of
sufficiency of diffusion holds and (b) there is a finite sampling rate.
The RHS is the sampling distribution of  given that the true data
generating process follows the form specified in Equation 1. Signif-
icant discrepancies between the two distributions would suggest
that higher-order terms (e.g., D(4>(mt)) play a non-negligible role,
thereby violating the null assumption of diffusion sufficiency, Ho.
Diffusion sufficiency test procedure. Algorithm 1 outlines the
step-by-step procedure for evaluating the sufficiency of a diffusion
process using the proposed K-statistic.

To test whether a given path w belongs to (2p0—that is, whether
it can be sufficiently described by a diffusion process—we proceed
as follows. We conduct pretests to check whether w is stationary
and Markov. Given parameters M > 0 (the number of surrogate
paths) and 0 < ¢ < 1 (the quantile threshold), we compute esti-
mates of the Kramers—Moyal (KM) coefficients D™ (z;), D@ (),
and D™ (z,) from the observed path. Using these estimates, we
calculate the observed statistic kopserved = || D™ (2+)||2. Next, we
reconstruct a diffusion stochastic differential equation (SDE) of the
form:

dzy = DY (2,) dt + /2D (z) AW, [12]

and use it to generate surrogate realizations of the process under
the null hypothesis H, (that the path is purely diffusive). Specifi-
cally, we perform a bootstrap procedure by generating j = 1,...M
surrogate paths w; from the reconstructed SDE. For each sur-
rogate w;, we estimate its fourth KM coefficient 15;4) (z¢) and

compute the corresponding statistic #; = || D{"(z¢)]|2, thereby
obtaining the null distribution D(x | Ho). Finally, we compare the
observed statistic Kobserved With this null distribution. If Kopbserved lies
below the ¢-th quantile of D(x | Ho), we conclude that w € Qo;
otherwise, we conclude that w € €21, indicating that the path cannot
be sufficiently described by a diffusion process.

Pretest for stationarity and Markovianity. Our proposed test
requires the observed time series to first pass stationarity and
Markovianity checks. To this end we used the Augmented-Dickey
Fuller (ADF) test for stationarity and the Conditional Mutual Infor-
mation (CMI) test to check for Markovianity could be used. The
ADF test evaluates whether a time series is stationary by checking
for the presence of a unit root, with added lag terms to account for
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Algorithm 1 Test whether w € ¢ (a path sufficiently described by
diffusion)

Require: w is stationary and Markov; M > 0 (number of surro-
gate paths); 0 < ¢ < 1 (quantile threshold)
1: Given w, compute estimates of KM coefficients (D™ (x),
D® (), DD ()
2: Compute observed statistic Kobserved:
Kobserved = ||ﬁ(4)(1’t)”2
3: Reconstruct diffusion SDE:
dz, = DY (x) dt + /2D () dW;
: Bootstrap the null distribution D(k|Ho):
for j = 1to M do
Generate surrogate path wj; using the reconstructed SDE
Estimate fourth KM coefficient D () for w;

. A (4
Compute «; using D§ )(mt)

© © N o a9~

: Compare Kopserved against D(x|Ho):

: if Kopserved < g-th quantile of D(x|Ho) then
conclude w € Qo

. else

conclude w € 4

autocorrelation (Dickey & Fuller, 1979). The CMI test assesses
whether a process follows a Markov property of a given order by
measuring how much new information the present adds about the
future after considering the past (Papapetrou & Kugiumtzis, 2013).

Estimation of Kramers-Moyal (KM) Coefficients. To estimate
the KM coefficients, we employ a non-parametric approach. Specif-
ically, we used the Nadaraya-Watson estimator to compute the KM
coefficients from a time series, as described in (Gorjao & Meir-
inhos, 2019). This kernel-based method estimates conditional
moments, K™ (x;), and offers several advantages over traditional
histogram-based approaches. Unlike histograms, it operates in
a continuous (non-binned) space and allows flexibility in kernel
selection, leading to more reliable results. Additionally, using ker-
nel convolution avoids the high memory demands associated with
sequential array summation. It is also particularly effective for short
time series, as it incorporates all data points, possibly assigning
greater influence to some based on the kernel.
Recall from Equation 4:

D™ (mt)

1 im 1<[m(t+7) —z @)

nlr=oT

m(t)>

And so, given a time series of length m, one can estimate the n-th
conditional moment in the above equation as:

() - @) o) =)

Cl'j = JZ>
k (Lhﬂv (TG — z3)"
Sk ()

where the change of notation in the first line formalizes the fact that
the expectation is being taken over a finite sample. In the second
line, h is the bandwidth of the kernel k(u), which satisfies the
condition [ u?k(u)du < occ. Ingeneral, the kernel k is any smooth

<[$j+1 — ;)"

2

[13]
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function that meets the following criteria: k(z) > 0, [ k(z)dx = 1,
and f xk(x) dx = 0. For this application we used a uniform kernel
and the bandwidth was estimated using Silverman’s rule of thumb
(Silverman, 2018).

Reconstruct the diffusion SDE. To reconstruct the SDE in

Equation 12 using the estimated coefficients D™ (z,) and
D@ (x,), it is necessary to first fit smooth functional models to
these quantities. Since the KM coefficients are computed empiri-
cally at discrete points—resulting in vector-valued estimates rather
than actual functions that could be evaluated—they cannot be di-
rectly used in simulation. To address this, we can fit a regression
model to the empirical estimates of D) (x;) and D (x;) across
the observed range of x;. For example, a spline regression or a
Gaussian process model can flexibly map a vector to a function.
These fitted models can then be used as the drift and diffusion
terms, respectively, in the reconstruction of the SDE to generate
surrogate time series.

Bootstrap the null distribution, D(x|Ho). We bootstrap the
distribution of the x-statistic under the null assumption of diffusion
sufficiency by simulating a large number (e.g., M = 1000 or more)
of time series using the reconstructed SDE. We use the same time
resolution and duration as the original data in this surrogate series
generation. Using the same KM estimation procedure as in §, we
estimate the 4th KM coefficients then compute k-statistic for the
surrogate data.

For each simulated time series j, estimate D;4)(xt) and com-
pute the corresponding x-statistic:

n 1/2
Kj = Hﬁ](4>(mt)||2 ~ (Z |ﬁj(4)(xt)|2>

t=1

forming an empirical distribution of x-values under the assumption
of diffusion sufficiency.

Decision rule. We note that since the k-statistic is computed
using a distance measure, its value is bounded below by zero. The
farther the observed k-statistic from the lower bound, the more
pronounced the role of higher-order KM coefficients is.

Hence, we can employ a decision rule where if Kopserved IS below
a certain quantile of the bootstrap distribution then we conclude
that the time series is sufficiently described by diffusion, otherwise
we reject the null hypothesis and conclude that the process exhibits
variation that is not fully explained by diffusion.

The choice of quantile determines the sensitivity and selectiv-
ity of the test with higher quantile suggesting we become more
permissive in what counts as diffusion.

Monte Carlo Study

We conducted simulation studies to evaluate the performance of
the test. In addition, we checked how the choice of quantile affects
the test results.

Setup and choice of parameters. We use the following model
to simulate paths that are diffusive and that contain additional
variation in the form of jumps:

where W, is a standard Brownian motion, a(z:) and b(z:) are
some functions of the state, £ is a random variable indicating the
magnitude jumps and J; (A) is a Poisson process counting the
jumps, with rate A. The jump term provides a source of variability
in addition to that due to diffusion.
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Table 1. Parameter settings for simulation studies

Diffusion parameters Jump parameters

Case a(xt) b(x¢) o¢ A
OU-1 —0.12¢ (linear) 0.1 (constant) - -
Oou-2 —0.1z¢ (linear) 0.3 (constant) - -
Ou-3 —0.1z¢ (linear) 1 (constant) - -
CIR-1  0.1(0.15 — x;) (linear)  0.1,/z; (square root) - -
CIR-2  0.1(0.55 — @) (linear) 0.3 \/x¢ (square root) - -
CIR-3 0.1(5.1 — z¢) (linear) 1\/z¢ (square root) - -
JD-1 —0.1 ¢ (linear) 0.3 (constant) 0.1 0.1
JD-2 —0.1z¢ (linear) 0.3 (constant) 0.5 0.1
JD-3 —0.1 ¢ (linear) 0.3 (constant) 1.0 0.1
JD-4 —0.1z¢ (linear) 0.3 (constant) 0.1 0.5
JD-5 —0.1 ¢ (linear) 0.3 (constant) 0.5 0.5
JD-6 —0.1z¢ (linear) 0.3 (constant) 1.0 0.5

We explore settings where a(z:) is a linear function of the state
and b(z+) is either a constant function or a square root function
of the state. For our purposes, we assume that the magnitude of
jumps follows a normal distribution centered at 0 with modifiable
variance, £ ~ N (0, 7). Further, we choose to modify the rate of
jumps, Ain Ji (N).

Table 1 shows the different cases we considered for the simula-
tion study. In total we have 12 cases, half of which generated time
series that are considered purely diffusive, and another half that
contain jumps. Among the diffusive cases, we considered either an
Ornstein-Uhlenbeck (OU) process or a Cox-Ingersoll-Ross (CIR)
process. These two differ in the magnitude of diffusive variation
with OU having a constant term and CIR containing a square root
function. In the simulation of the time series for CIR we ensured
that the Feller condition was met to ensure positivity of the gen-
erated series (Albrecher, Mayer, Schoutens, & Tistaert, 2007). In
addition to guaranteeing stationarity in the generated series, we
chose the mean or attractor parameter in a(z:) to be of the form
uw = % + 0.1, where speed s and volume v correspond to the
constant multipliers of a(z:) and b(z:), respectively.

Since J; (A) in the model (Eq. 14) is a Poisson process, if the
rates of jump A are too small, the simulated processes may not
violate the notion of diffusion (because at low but nonzero jump
rates, the number of jumps may be 0). Hence, in simulating the six
cases that correspond to the alternative hypothesis, we required
for the procedure to only generate series with at least one jump.
We vary the jump rate, A, and the variance of the jump sizes, &, to
test the sensitivity of the test. All models were simulated using the
Euler-Maruyama scheme and we chose the simulated time series
to be of length n = 1000.

Choice of regression model for the reconstruction of the dif-
fusion SDE. To be able to use the estimated first and second
KM coefficients for the SDE reconstruction, we fitted spline regres-
sion models to the empirical estimates of a(z;) = D™ (z,) and
b(xy) = \/m across the observed range of x;. Cubic
spline basis were used with 10 interior knots to allow flexibility
and to be able to capture potential nonlinear relationships. The
coefficients for the spline basis functions were then estimated via
ordinary least squares regression. These fitted regression models
were then used to generate M = 1000 surrogate paths used to
bootstrap D(x|Ho).
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Table 2. Simulation studies results.

<— more conservative more liberal —

Case g=0.999 g=0.99 g=0.98 g=0.97 g=0.96 g=0.95
OU-1 0.000 0.000 0.010 0.020 0.025 0.025
Ou-2 0.000 0.000 0.000 0.005 0.005 0.015
OuU-3 0.000 0.020 0.040 0.050 0.060 0.070
CIR-1 0.015 0.045 0.055 0.080 0.090 0.125
CIR-2 0.020 0.090 0.110 0.140 0.155 0.170
CIR-3 0.005 0.035 0.080 0.115 0.135 0.150
JD-1 0.555 0.785 0.825 0.845 0.885 0.890
JD-2 0.560 0.690 0.740 0.760 0.780 0.785
JD-3 0.360 0.495 0.550 0.570 0.575 0.580
JD-4 0.760 0.895 0.930 0.945 0.945 0.945
JD-5 0.645 0.800 0.835 0.840 0.855 0.860
JD-6 0.725 0.905 0.940 0.945 0.955 0.960

Note: Reported results are empirical rejection rates of the test based on
200 Monte Carlo replications for each case and where each time series
considered is of length n = 1000.

Monte Carlo results. Table 2 presents a summary of the simula-
tion results. It reports the empirical rejection rates of the proposed
test, computed from 200 replications for each simulation setting.
The table also provides the rejection frequencies corresponding to
the chosen quantile threshold used in the decision rule.

Overall, the results demonstrate that the test performs well
in correctly identifying processes that are genuinely diffusive, as
evidenced by low rejection rates under the true diffusion cases.
When the quantile is set to 0.999, the test almost never rejects the
null hypothesis for purely diffusive processes—indicating that the
test recognizes them as sufficiently described by diffusion alone.
Conversely, for processes that include additional variation through
jumps, the observed kopserved Often exceeds the maximum «; within
the null distribution D(x | Ho), leading to a rejection of the null as
expected.

Furthermore, we observe the anticipated pattern when varying
the chosen quantile: lowering the quantile threshold makes the
test more liberal, increasing the probability of rejecting the null
hypothesis.

Figure 2 illustrates representative examples from the OU-2,
CIR-2, and JD-2 cases. These examples highlight the accuracy of
the test in distinguishing between diffusive and jump-diffusive time
series, confirming the method’s reliability across different process
types. The presented JD-2 case example had three jump instances
and with the chosen quantile threshold of 95%, we see that the
test reliably diagnoses the time series as not diffusive.

We report receiver operating characteristic (ROC) curves in
Figure 3 summarizing the performance of the proposed test across
various quantile thresholds for different null-alternative pairs. Four
ROC curves are shown, corresponding to the test’s performance
on the following pairs: (1) OU-2 vs. JD-5, (2) OU-3 vs. JD-2, (3)
OU-3 vs. JD-1, and (4) CIR-1 vs. JD-1. Although ROC curves
were generated for all 36 possible null-alternative combinations,
these four were selected to illustrate the range from the best to the
weakest performance of the test.

When applied to the OU-2 and JD-5 series, the test achieved
an area under the curve (AUC) of 0.968, indicating near-perfect
discrimination. For the OU-3 and JD-2 pair, the AUC was 0.869; for
OU-3 and JD-1, 0.778; and for CIR-1 and JD-1, 0.701, represent-
ing the lowest observed performance. The reported AUC values
demonstrate strong test performance. An AUC close to 1 signifies
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Fig. 2. Example results of the proposed test for three representative cases: OU-2,
CIR-2, and JD-2 (see Tab. 1). The panels on the left display the corresponding time
series for each case. The OU-2 (top) and CIR-2 (middle) series originate from pure
diffusion processes, while the JD-2 series (bottom) includes an additional source
of variation in the form of jumps, indicated by the orange dashed lines. The blue
histograms in the right panels show the distribution D(x | H¢) for each example.
The observed k-statistic is marked by the red dashed line, and the 95th quantile
of D(k | Ho) is shown as the black dotted vertical line. With the chosen quantile
threshold of ¢ = 0.95, all three examples are correctly classified.

that the method effectively distinguishes between diffusive and
non-diffusive (jump) processes, achieving a good balance between
sensitivity and specificity.

Empirical application

Mobile health data application. We applied the proposed test to
a subset of data from a mobile health (mHealth) intervention study
designed to promote psychological well-being among college stu-
dents (Heshmati et al., 2025). In the study, participants completed
brief daily wellness surveys assessing various dimensions of psy-
chological well-being (PWB). Participants received notifications
on their phones prompting them to report their well-being levels.
During the initial laboratory session, participants were randomly
assigned to one of three groups: a control group (Control), a pos-
itive practice intervention group (PPI), or a meditation-enhanced
positive practice group (PCPI). The study began with a 14-day
baseline phase without intervention, during which participants only
completed momentary PWB assessments. This was followed by a
15-day intervention phase, during which participants in the control
group performed an evening working-memory task, while those
in the intervention groups engaged in positive or contemplative
practices (e.g., meditation, reflecting on three good things they did
during the day). Then followed a 28 day post-intervention phase.
We implemented our new test on two participants’ self-reported
emotional arousal levels — that is, the intensity of emotions experi-
enced at the time of reporting. One participant (ID 171) belonged
to the control group, while the other (ID 139) was part of the PCPI
group. The emotional arousal level series of these participants
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Fig. 3. Receiver operating characteristic (ROC) curves illustrating the performance
of the proposed test across various quantile thresholds for different null-alternative
process pairs. The figure displays results for four representative cases: (1) OU-2 vs.
JD-5, (2) OU-3 vs. JD-2, (3) OU-3 vs. JD-1, and (4) CIR-1 vs. JD-1. These examples
were selected from the 36 possible null-alternative combinations to reflect the range
from the strongest to the weakest test performance. The corresponding areas under
the curve (AUCs) are 0.968, 0.869, 0.778, and 0.701, respectively. Higher AUC
values indicate better discriminative ability between diffusive and non-diffusive (jump)
processes. Overall, the results demonstrate that the proposed test achieves strong
classification performance and maintains a good balance between sensitivity and
specificity across a variety of process pairs.

passed our pretests for stationarity and Markovianity in §.

Figure 4 shows the test results for both participants’ emotional
arousal trajectories over the course of the study. Using a quantile
threshold of 95%, the time series for Participant 139 was classified
as diffusive, whereas Participant 171’s was not, suggesting the
presence of additional sources of variation beyond diffusion.

Qualitatively, the two participants showed distinct temporal pat-
terns. Participant 139’s emotional arousal reports remained rel-
atively stable between 0.4 and 0.8, with only minor fluctuations.
In contrast, Participant 171’s trajectory displayed marked shifts
between high and low values during the first half of the study, char-
acterized by clusters of consecutive reports near each jump — most
notably between weeks 1.5-2 and 4-4.5. In the latter half, Partici-
pant 171 reported generally higher arousal levels, interrupted by
brief low-value episodes that quickly recover in the subsequent
measurement. The pattern exhibited in the first half of the study
is consistent with the behavior expected from a jump-diffusion
process.

EEG application. We apply our approach to electroencephalo-
gram (EEQG) recordings collected from pre-surgical epilepsy pa-
tients (Andrzejak et al., 2001). The analysis considers three rep-
resentative single-channel EEG time series (Fig. 5), each with a
duration of 23.6 seconds and preprocessed to remove artifacts.
The EEG data were obtained from the epileptogenic zone—regions
of the brain capable of precipitating epileptic activity—using a 128-
channel amplifier system with an average common reference. Sig-
nals were band-pass filtered between 0.53 and 40Hz, digitized
with 12-bit precision, and sampled at 173.61Hz (Andrzejak et al.,
2001, pp. 2-3). These EEG time series were also subjected to our
pretests for stationarity and Markovianity in §.
Using a quantile threshold of 95%, segment F097 was identi-
fied as sufficiently diffusive, while segments F086 and FO76 were
University of California, Irvine |
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Fig. 4. Test results for two participants’ self-reported emotional arousal levels over the
course of the study. Using a quantile threshold of 95%, the time series for subject 139
(intervention group) was classified as sufficiently diffusive, while subject 171 (control
group) was not, indicating additional sources of variation beyond diffusion. Subject
139's trajectory remained relatively stable between 0.4 and 0.8, whereas subject
171’s exhibited pronounced shifts between high and low values in the early phase
(weeks 1.-2 and 4-4.5) and higher arousal with brief low-value dips later in the study,
consistent with jump-diffusion behavior.

not. This outcome aligns with the qualitative distinctions observed
among the three segments. Segment F076 shows clear periodic
positive jumps, suggesting variability that deviates from purely dif-
fusive behavior. In contrast, segment F097 closely resembles the
canonical diffusion-like time series and is accordingly classified as
diffusive by the test. Segment F086 appears largely diffusive but
displays intermittent jump-like behavior, leading the test to classify
it as not diffusive.

Discussion

The simulation results provide evidence that the proposed test
reliably distinguishes between purely diffusive and jump-diffusive
processes. Across all simulation settings, the test showed low
rejection rates under true diffusion, confirming its ability to avoid
false positives. Conversely, when jump components were intro-
duced, the test successfully rejected the null hypothesis. The ROC
analyses further support these findings, showing high AUC values
across a range of diffusion—jump comparisons. These results indi-
cate that the test achieves a favorable balance between sensitivity
and specificity, with performance improving as the frequency of
jumps increase.

Applying the test to the mHealth well-being data further demon-
strates its value in real-world behavioral settings. Psychological
and emotional states, as captured through intensive self-reports,
often exhibit both gradual fluctuations and abrupt transitions driven
by contextual or internal events. In our application, one participant’s
emotional arousal trajectory (Participant 139) was characterized
as diffusive, consistent with stable affective dynamics over time.
In contrast, another participant (Participant 171) showed strong
deviations from diffusion, displaying intermittent jumps between
emotional states — a pattern that may reflect episodic shifts in
mood or responsiveness to intervention demands. These findings
align with the simulation outcomes and illustrate how the test can
capture meaningful distinctions in temporal dynamics and be used
as a preliminary check for the sufficiency of diffusion as a model.

Another application of the test was made to EEG data collected
from pre-surgical epilepsy patients. Among three representative
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Fig. 5. Test results for three representative EEG segments. Using a quantile threshold
of 95%, segment F097 was classified as sufficiently diffusive, whereas segments
F086 and FO76 were not.

EEG time series, we found two that showed clear deviations from
purely diffusive behavior. This has implications for the study of
epileptic dynamics since earlier work that tried to characterize
epileptic dynamics from EEG recordings relied on the assumption
of diffusion (Prusseit & Lehnertz, 2007). More recent work ex-
amined jump-diffusion processes epilepsy (Anvari, Tabar, Peinke,
& Lehnertz, 2016) hinting that additional variation is necessary
to effectively capture the the dynamics. Our test results provide
further evidence for models that go beyond simple diffusion.

At present, the test considers the diffusion class defined by
Equation 1, in which neither a(x:) nor b(x) are explicit functions
of time, ¢ — time factors in only indirectly as it affects x:. This is due
to a current limitation in the estimation procedure for the KM coef-
ficients, where instead of estimating D™ (x, t) we are restricted
to only estimating D™ (z;). The current estimation procedure
relies on kernel-based methods and incorporating potential time
dependence, t, would require substantially longer time series to
maintain estimation precision. Further methodological advances
in the estimation of KM coefficients are therefore necessary to
capture possible time-varying effects, D™ (x, ¢).

As a consequence, rejection of the null hypothesis under the
current test indicates that purely endogenous diffusion—that is,
diffusion dynamics independent of time caused only by serial de-
pendence of the variate on its previous value—is not sufficient
to explain the observed behavior. Accordingly, users of the test
are encouraged to further examine whether such deviation arises
from additional sources of variation, such as discontinuous jumps,
or whether incorporating time-varying effects would adequately
account for the observed dynamics.

Conclusion

We develop a test to assess whether a diffusion process is suffi-
cient to describe an observed time series. The test is based on
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the results from Kramers—Moyal (KM) expansion and the Pawula
theorem, which says that if an observed time series is already
Markov and exhibits stochasticity, then there are only two possibili-
ties: either it is diffusive which corresponds to the truncation of the
KM expansion at the second term or it is not, meaning all terms
in the KM expansion are needed. We evaluated the performance
of the test by checking how it fares when decision threshold are
varied and found overall good performance of the test.

Applying the proposed test to real-world data from a mobile
health well-being intervention study revealed evidence for the pres-
ence of additional sources of variation beyond diffusion. Specif-
ically, one example participant’s self-reported emotional arousal
trajectory deviated from the null hypothesis of pure diffusion, dis-
playing temporal patterns consistent with jump-like dynamics. In
addition, application to EEG data from pre-surgical epileptic pa-
tients revealed that epileptic dynamics might be best studies by
adding variation beyond diffusion.

Methodological advancement in the estimation of time-varying
KM coefficients can aid in future work to extend the test to diffusion
processes that are not purely endogenous and that vary over time.
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