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Abstract 

We develop a quantum probability model that can account for 
situations where people’s causal judgments violate the 
properties of causal Bayes nets and demonstrate how the 
parameters of our model can be interpreted to provide 
information about underlying cognitive processes. We 
implement this model within a hierarchical Bayesian 
inference framework that allows us to systematically identify 
individual differences and also provide a latent classification 
of individuals into categories of causal and associative 
reasoners. Finally, we implement a basic normative causal 
Bayes net within the same inference framework that allows us 
to directly compare quantum and classical probability models 
using Bayes factors.  

Keywords: Causal reasoning; quantum probability; Bayesian 
graphical models; causal Bayesian networks; individual 
differences; latent mixture models; violations of normative 
properties; Bayesian inference;  associative reasoning 

Introduction 
We investigate a subset of causal reasoning paradigms 
where people have to make judgments about causal systems 
based on linguistic descriptions of the causal properties of 
the system, i.e. where precise statistical information is not 
presented. In these situations, people’s judgments often 
violate the properties of causal Bayes nets (Rottman & 
Hastie, 2014; Park & Sloman, 2013; Rehder, 2014; 
Fernbach & Sloman, 2009; Waldmann, Cheng, Hagmayer, 
& Blaisdell, 2008; Hagmayer & Waldmann, 2002). One 
important property of Bayes nets is the causal Markov 
condition, which states that any node in the network is 
conditionally independent of its non-effects, given its direct 
causes (Hausman & Woodward, 1999). To account for 
observed behavior, Bayes nets are often augmented with 
heuristic-like shortcuts (Fernbach & Rehder, 2013) or with 
the inclusion of variables that account for hidden aspects of 
the problem (that is, not part of the experimental paradigm, 
and assumed to be the result of participants’ mental process) 
such as alternative causes, shared disabling, mediating or 
enabling conditions between variables, and so on. (Rehder, 
2014).  

We propose that quantum probability models of causal 
reasoning can provide a more formal, principled alternative 
approach for explaining violations of the properties of 
classical probability models, such as causal Bayes nets. We 

investigate the application and benefits of applying quantum 
probability models by using these models to explain the 
empirical results reported in Rehder (2014), which 
demonstrated violations of the causal Markov condition, as 
well as failure to exhibit robust discounting (this occurs 
when the presence of one cause makes the presence of 
another less likely in certain casual structures).  

Description and Results of Experiments 
In Rehder (2014), participants were taught one of the three 
causal network structures (common cause, chain or common 
effect) encompassing a set of relationships between three 
binary variables as shown in Figure 1, instantiated in either 
a domain-general (abstract) or domain-specific (economics, 
sociology, or meteorology) setting. The causal relations 
specified how variables were related, (e.g. in the economics 
domain, the variables were interest rates, trade deficits, and 
retirement savings, each of which could be large (high) or 
small (low); a relationship could take the form: low interest 
rates cause small trade deficits). Each individual 
relationship in the causal structure was described as being 
driven by independent causal processes.  

 

Figure 1: Causal structures considered in the experiments 
 
The causal relationships were unidirectional, in the sense 

that if a particular (high or low) value of a cause variable 
facilitated the presence of an effect, the other binary value 
did not have the opposite effect (e.g. if low interest rates 
caused small trade deficits, high interest rates were causally 
unrelated to trade deficits). Once the causal structures had 
been taught, participants were asked to make a comparative 
inference on the probability of a target variable (Y) taking a 



specific value (denoted y1), between two different network 
states within a particular causal structure. The eight network 
states used in the comparison (situations A to H; see Table 
1) represented different values of the remaining two 
variables X and Z, namely `0' (representing a state value 
that does not exert any causal influence), `1' (representing a 
state value that causally influences or is influenced), or ‘?’ 
(unknown value). Participants were asked to compare states 
A vs B, B vs C, D vs E, F vs G and G vs H, and indicate 
which of the two situations provided stronger inferential 
support for the target variable (always referred to as Y for 
the rest of the paper), or whether support was equal for each 
variable. 

 
Table 1: Normative Inferential Predictions 

 
Situation X Z CC CH CE 

A 1 1 
A=B=C A=B=C C > B > A B ? 1 

C 0 1 
D 1 ? 

D >> E D >> E D = E 
E 0 ? 
F 1 0 

F=G=H F=G=H F=G=H G ? 0 
H 0 0 

 
For our analyses, we combined the data from four 

experiments in Rehder (2014) (i.e., experiments 2, 3, 4A 
and 4B). Across these four experiments, there were 315 
participants. Each participant made twenty such 
comparative judgments, with the causal structure (common 
cause, chain, common effect) and domain of variables 
(economics, sociology, meteorology, and an abstract domain 
in one condition) as between-subject conditions. 

Table 1 also shows the normative predictions for each 
possible pair of situations based on a causal Bayes net 
treatment of the inference problem (see Rehder, 2014 for a 
detailed analysis of the normative predictions). Two key 
properties included the causal Markov condition and 
discounting behavior in the common effect structure (the 
known presence of one cause makes the presence of an 
alternate cause less likely). Rehder (2014) found that a 
significant number of participants violated these two 
properties, and observed that about 23% of the 315 
participants exhibited some form of associative reasoning, 
that is, a lack of sensitivity to causal direction, ignoring 
conditional independence stipulated by the causal Markov 
property or exhibiting anti-discounting behavior (i.e. 
judging the target cause as highly probable based on the 
presence of an alternative cause, which is opposite to 
normative expectation). These participants were classified 
as associative reasoners, whereas the rest were classified as 
causal reasoners. 

Rehder (2014) accounted for these violations by 
suggesting a mixture of normative behavior with three 
additional inference strategies (conditional probabilities 
being assessed conjunctively, assumption of a hidden 

disabling mechanism shared by the cause variables, 
assumption of an associative Markov random field 
network), which when appropriately weighted could 
reproduce behavior for both causal and associative 
reasoners. Each of these models had between three to five 
free parameters, with an additional three free parameters for 
the mixture weighting these models. 

Specifying the Quantum Probability Model 
We specify a 2-dimensional (2-d) quantum probability (QP) 
model to reflect the mental representations of the three 
binary variables X, Y and Z (Trueblood & Pothos, 2014). In 
this model, the three variables are deemed incompatible, 
that is these variables span separate subspaces within the 2-
dimensional space. This implies that consideration of these 
variables cannot take place concurrently, but rather has to be 
sequential, so that order effects may arise when both 
variables need to be assessed (e.g., in a conjunction).  

Accordingly, the two dimensions for each subspace 
({x1,x0},{y1,y0}{z1,z0}) shown in Figure 2 represent the 
two values that each binary variable can take. Since the 
causal structures are unidirectional (that is, only one value 
affects the system causally), the values (for instance y1 and 
y0) are encoded such that y1 always indicates the value that 
is causally linked (e.g. if low interest rates cause high 
deficits, low interest rates and high trade deficits are 
encoded as 1, high interest rates and low trade deficits, 
which do not influence or experience causal influence, are 
encoded as 0).  

Figure 2: Representation of the 2-d QP model 
 
The model specifies a unit length state vector |ψ› which 

represents the current state of belief held by an individual. 
The relative degree of rotation of the state vector from each 
basis vector (e.g. θψ from the y1 basis vector) defines the 
individual’s belief in the probability of that variable. Thus, 
an individual’s belief in the probability of a certain variable 
taking a certain value (e.g.  p(y1) in Figure 2) can be 
obtained by projecting the state vector (black dotted line) on 
to the coordinate axis of interest and taking the squared 
value of the resulting amplitude (black bar).  



Conditional probabilities (for example, p(y1|x1)) are 
measured by projecting the state vector onto the known (x1) 
basis vector, normalizing it (making it unit length) to 
account for the fact that the state x1 is known (squared 
amplitude =1), and then projecting this vector to the basis 
vector y1. The squared amplitude of the resulting projection 
along y1 gives the conditional probability p(y1|x1). 
Similarly, conjunctive probabilities (for example p(x1&y1)) 
are assessed by making successive projections to x1 and y1, 
but without normalizing the intermediate projection. 

We propose that this formulation can predict order 
effects, reciprocity (related to the inverse fallacy; Koehler, 
1996), memoryless effects such as a lack of discounting, 
and violations of the Markov condition. In terms of assessed 
probabilities, order effects, for instance, allow the 
probability p(y1&x1) to differ from p(x1&y1). Reciprocity 
is a specific property of the 2-d model, where for two 
variables, e.g. Y and X, the conditional probabilities 
reciprocate, that is p(y1|x1) = p(x1|y1). Memoryless effects 
refers to the fact that assessment of probabilities conditional 
or more than one variable reduce to the conditional 
probability based on the last updated information only, for 
instance, p(y1|x1,z0) = p(y1|z0) and p(y1|z0,x1) = p(y1|x1), 
which hence also leads to order effects. A lack of 
discounting can be explained by way of the memoryless 
property. Discounting refers to the fact that in a common 
effect scenario, considering classical probabilities, 
p(y1|x1,z1) < p(y1|z1), where z1 is the common effect. The 
memoryless property however reduces p(y1|x1,z1) to either 
p(y1,z1) or p(y1|x1), depending on what projection order is 
used. In the former case, this leads to a lack of discounting. 
Unless the two bases are exactly at an angle of 45° to each 
other, the model also predicts violations of the Markov 
condition, that is, a violation of the fact that p(y1|x1) should 
be equal to p(y1|x0), if X and Y are conditionally 
independent.  

To formulate the specific causal networks investigated we 
set the basis for Y (all inference by participants is made on 
the variable Y) as the standard basis, and two free 
parameters (θX and θZ) denote rotations for the basis vectors 
of X and Z in the 2-dimensional space. The degree of 
rotation between the different bases determines the 
conditional and conjunctive probability relationships 
between them. The rotation is restricted to the first quadrant 
to reduce any identifiability issues (e.g. a rotation from y1 
of 30° and 330° would result in an identical projection onto 
y1). The state vector is not a free parameter but is fixed at a 
neutral position of 45° to the standard basis, reflecting the 
assumption that people should not have any preconceived 
bias towards the presence or absence of the target variable 
to be inferred, and that the randomized configurations 
provide no information on the base rate of events.  

The model separates two types of inference situations. In 
the first, inference on Y needs to be made with only one of 
the other two variables (either X or Z) being known and the 
other being unknown (situations B, D, E and G in the 
experiment, see Table 1).  Here, the model specification for 

p(y1) is given by p(y1 & Unknown = 1 | Known) + p (y1 & 
Unknown = 0 | Known). This is achieved by projecting the 
state vector |ψ› onto the basis vector representing the known 
variable value and normalizing it (unit length to reflect the 
conditional probability), then projecting the normalized 
vector on to the basis vector representing the unknown 
variable value `1'. The squared amplitude of this 
intermediate projection reflects p(Unknown = 1 | Known). 
This projection (without normalizing) is then projected 
again on the basis vector y1. This final projection is squared 
to get the first term on the left, that is, p(y1 & Unknown=1 | 
Known) in the above probability. The second term is 
obtained using a similar sequence of operations, with the 
intermediate projection being to the basis vector 
representing the unknown variable value `0' instead of ‘1’. 
The combination of these probabilities reflects the 
assumption that people consider the known information, 
then effectively integrate over the two conjunctive 
probabilities of the target variable (Y) being ‘1’ and each 
possibility for the unknown binary variable.  

The second type of inference relates to situations where 
both the remaining variables, X and Z, are known (situations 
A, C, F and H in the experiment). Here the model 
specification is similar to that described above, except that 
the intermediate projection is only made on the known value 
and is also normalized (projection rescaled to unit length to 
reflect calculation of conditional probability). Since both X 
and Z are known, the order of projections can vary and since 
the model exhibits memoryless properties, this can give rise 
to order effects between participants, such that participants 
can calculate either p(y1| Known X, Known Z) = 
p(y1|Known Z) or p (y1| Known Z, Known X) = 
p(y1|Known X). We include a free latent parameter that 
allows the model to infer the most likely order 
representation for each individual. 

Table 2 lists the probability calculations and projection 
sequences for each of the situations. For A, C, F, and H, the 
individual differences in probability estimates can arise 
from the projection order or rotation parameters. For B, G, 
D, and E, individual differences arise from the rotation 
parameters. 

 
Table 2: Probability specification in the 2-d model 

  
Situation X Z Probability Specification 

A 1 1 p(y1 | x1, z1) or p(y1 | z1, x1) 
B ? 1 p(y1 & x1 | z1) + p(y1 & x0 | z1) 
C 0 1 p(y1 | x0, z1) or p(y1 | z1, x0) 
D 1 ? p(y1 & z1 | x1) + p(y1 & z0 | x1) 
E 0 ? p(y1 & z1 | x0) + p(y1 & z0 | x0) 
F 1 0 p(y1 | x1, z0) or p(y1 | z0, x1) 
G ? 0 p(y1 & x1 | z0) + p(y1 & x0 | z0) 
H 0 0 p(y1 | x0, z0) or p(y1 | z0, x0) 

 
The probability of the target variable under any situation 

A to H is calculated as p(Y=1|situation), based on the 
appropriate sequences of projections and normalization as 



described above. Probabilities for the two situations (say, s1 
and s2) being compared are calculated separately, assuming 
the same parameter value for the rotations X and Z under 
both, so that comparisons are based on a consistent set of 
beliefs about the entire causal system. The final choice 
proportions are predicted based on a softmax decision rule, 
so that choice ratio (h) for s1 versus s2 is given by 
exp(logit(p(y1|s1))/τ) / Σs=s1,s2 exp(logit(p(y1|s))/τ), where τ 
is the temperature parameter and is fixed to a constant of 1.  
We use this rule for consistency with the original study 
(Rehder, 2014) to ensure that any differences in prediction 
can be attributed to the underlying probability models.  

Bayesian Latent Mixture Model  
The quantum probability (QP) model requires inference on 
the rotation parameters for the X and Z bases, as well as the 
projection orders for each participant. We propose a 
hierarchical Bayesian latent mixture model to infer these 
parameters, which allows us to account for individual 
differences systematically, and build in a hyper-parameter 
for latent classification of participants between causal and 
associative reasoning. The latent classification is built by 
specifying a different set of priors for specific projection 
orders and rotation parameters.  

Parameters θZ and θX represent the rotation of the Z and X 
bases from the standard Y basis. Recollect that if the 
rotation θZ < π/4, then p(y1|z1) > p(y0|z1), and that p(y1|z1) 
> p(y1|z0). Thus, θZ is modeled hierarchically with a probit 
transformation and scaled to span [0, π/4]. This range 
reflects the assumption that participants learn the causal 
structure of the networks (i.e. that z1 has a causal influence 
on y1), and it is unlikely that they will reverse the implied 
structure. The rotation θX is modeled with a prior range of 
[0, π/2]. Recollect that if the rotation θX = π/4, then there is 
no causal influence of X. That is, p(y1|x1) = p(y1|x0) and 
p(y1|x1) = p(y0|x1). We allow θX to vary on both sides of 
π/4, thus allowing individuals to construct positive and 
negative causal influences.  

All hyper-parameters are separately modeled for causal 
and associative categories, and a latent classification 
parameter (γi) is used to build a mixture model that 
classifies each individual into a causal or associative 
category. The binary projection orders for situations A, C, F 
and H are modeled as Bernoulli processes, with the 
Bernoulli prior (α) for each being dependent on the causal 
structure type and the latent classification. The latent 
classification parameter is itself modeled as a Bernoulli 
process with equal prior probability of classification to 
causal or associative categories.  

The latent classification mechanism works because the 
model infers the projection orders that best explain the 
observed data, and since different orders are given different 
priors under each category (causal and associative), it 
selects the category that provides the highest posterior 
probability for the best projection order. We examine this 
mechanism in greater detail below. First, we describe how 
behavior similar to the normative prescriptions of a classical 

probability model might be represented under the QP model. 
Note that when the values of X and Z are both known 
(situations A, C, F and H), the model exhibits a memoryless 
property, that is, the projection order of considering X first 
and then Z reduce to making an inference based on the last 
seen value of Z only, and vice versa. Ideal normative 
reasoning for the common cause and chain structures, for 
these situations (ACFH), then implies that the order of 
processing is X followed by Z (equivalent to processing 
only Z), where inference is made by a projection from z1 to 
y1 for situations A and C, and from z0 to y1 for situations F 
and H.  

For the common effect structure, an ideal causal reasoner 
can be represented with a projection sequence from z0 to y1 
for situations F and H, where no causal effect exists. 
However, for situations A and C where the value of Z = 1 (a 
common causal effect is known to exist), the projection 
sequence should include a final projection from the X vector 
to y1, accompanied by ensuring that the rotation for the X 
basis is significantly more than the rotation for the Z basis 
(ideally, also greater than π/4 to ensure that x0 has a higher 
level of association with y1 than x1 does to reflect 
discounting). It should be noted that the causal reasoners 
identified in the cluster analysis in Rehder (2014) were not 
ideal causal reasoners, and although they demonstrated 
normative behavioral patterns for the most part, there were 
also some patterns of deviations. These deviations were 
more salient in the common effect structure.  

To identify individual differences, we do not impose these 
strict restrictions on causal reasoners (indeed, very few 
participants, if any, would demonstrate alignment to the 
strictest criteria). Rather, we allow the model to flexibly 
account for all types of behavior ranging from highly 
normative to highly associative. For each structure, we then 
identify aspects of the model that potentially differentiate 
causal and associative reasoners along this continuum.  

Under the common cause network, we propose that 
situation C reflects a unique situation where z1 and x0 
suggest a potential conflict (although not normatively) if the 
causal structure is assumed to be deterministic. Note that in 
this experimental paradigm, situation F with z0 and x1 does 
not represent as strong a conflict since causal influence is 
unidirectional. Similarly, for the chain network structure, 
situation F represents a potentially conflicting situation if a 
deterministic causal influence from X (value x1) to Z (value 
z0) is expected, but does not occur. While multiple 
experiments ensured that deterministic and probabilistic 
versions of causal influence were tested, differences in 
behavior across these experimental conditions were not 
significant. Additionally, even probabilistic causal influence 
under situation C in the common cause and situation F in 
the chain network would reflect some form of conflict as 
measured against the expected direction of causal influence.  

In our model, we use these potential sources of conflict to 
model the latent classification between causal and 
associative reasoners. Participants who are more likely to 
process X last under situation C in the common cause and 



under situation F in the chain network are more likely to be 
classified as associative reasoners. Note that this mechanism 
is not necessary to provide a good fit to the data, but only 
for adding the latent classification mechanism to the model. 

For the common effect structure, the projection orders are 
not envisaged to affect the classification, which is 
determined solely by the inferred rotation of the X and Z 
bases. This is achieved by considering a partition of the 
prior space for θX, with a prior space range of [θZ, π/2] for 
causal reasoners (reflecting the fact that causal reasoners 
will not hold a higher association between the two causes 
than between the cause and the effect) and [0, π/4] for 
associative ones (reflecting the fact that associative 
reasoners will hold some positive association between the 
two causes, leading to anti-discounting behavior). The prior 
space for θZ itself is modeled through separate hierarchical 
distributions. Thus, the inference mechanism decides on a 
latent classification to the causal category if the resulting 
posterior for θX biased towards values higher than θZ 
provides a better account of the data. Implementing these 
biases in the projection order for situations C and F in the 
common cause and chain structures respectively, and in the 
rotation parameters for the common effect structure as 
partitions of the prior space, enables the latent classification 
mechanism to categorize participants as causal or 
associative reasoners depending on which prior space 
provides the best posterior predictions. 

Modeling the empirical data 
We fit the model to the mean choice proportions for the 20 
inference questions for each of the 315 participants by 
estimating parameters to the quantum probability model 
using the Bayesian inference model described above. A 
version of the normative causal graphical model (CGM) 
suggested in Rehder (2014) was also used to fit the data 
within a similar Bayesian inference framework. Figure 3 
shows the mean choice proportions (i.e., the number of 
times a situation was judged to provide stronger inferential 
support for the presence of the unknown target variable) 
made by the participants (empirical), compared to the 
posterior predictive choice proportions generated by the best 
fitting QP and normative CGM models. Table 3 summarizes 
the performance of these models.1  

The posterior predictive mean choice proportions are used 
to calculate the correlation with the actual data and the mean 
square error (MSE). The Bayesian modeling framework 
allows us to capture the deviance information criteria (DIC) 
that assess both model fit and complexity, and use Bayes 
Factors to compare the QP and normative CGM models at 
an individual level. As shown in Table 3, the QP posterior 
predictions show an excellent correlation to empirical data 
across network structures and types of reasoners (ranging 

                                                           
1 Overall the models and measured deviance show good 
convergence (R < 1.1), however examining the three individual 
level parameters across 315 participants shows that the MCMC 
chains show poor convergence (R > 1.1) for about 0.8% of the 
individual estimates.  

from 90% to 95%) and provides a significantly better fit 
compared to the baseline normative CGM model even for 
the causal reasoners. The QP model yielded an MSE of 0.01 
against 0.045 for the normative CGM model.  

 
Table 3: Model Comparison and Performance 

 
 DIC (lower is better) 
Causal Structure QP Normative CGM 
Common Cause (CC) 1470 1936 
Chain (CH) 1547 1998 
Common Effect (CE) 1641 2366 
 Correlation 

(model prediction and data) 
Structure / Reasoning QP Normative CGM 
CC – Causal 92.6 77.2 
CC – Associative 93.4 31.2 
CH – Causal 93.3 75.9 
CH – Associative 93.6 30.7 
CE – Causal 90.3 52.5 
CE – Associative 95.0 16.0 

 
A Bayes factor (BF) analysis was carried out using the 

product space method (Lodewyckx, Kim, Lee, Tuerlinckx, 
Kuppens, & Wagenmakers, 2011). The analysis was 
inconclusive for 178 of the 315 participants since the BF in 
favor of the QP model for these participants ranged between 
1/5 to 5. No participants had a BF > 5 in favor of the CGM 
model while 137 participants had a BF > 5 in favor of the 
QP model, of whom 103 had a BF > 100, showing a 
significant preference for the QP model.  

Explaining Individual Differences 
The latent classification mechanism provided a Bayes 

Factor comparing the evidence for each individual being a 
causal versus associative reasoner. Based on classifying a 
participant in a category if the BF > 1 in favor of that 
category, the model identified 265 of the 315 participants 
(84%) in accordance with the classification provided in the 
original study (Rehder, 2014). The model classified 32% of 
the participants as associative (as compared to 23% in the 
original study) without being provided any details about the 
base rate. Individual differences in the parameter space were 
thus successful in identifying cognitive differences. We 
discussed how projection orders can explain order effects 
and specifically, violations of the causal Markov condition. 
The projections orders for situations C and F in particular, 
for the common cause and chain conditions, were 
instrumental in the latent classification process. The 
posterior samples from the model shows that for the 
common cause structures, causal reasoners were inferred to 
make a final projection from Z onto y1 84% of the time and 
associative reasoners only 12% of the time for situation C. 
Similarly, for situation F under the chain structure, causal 
reasoners were inferred to make the normative projection 
from Z to y1 77% of the time, and associative reasoners 
only 33% of the time. The more frequent projection from X 



to y1 (67%) for the associative reasoners suggests that the 
potentially conflicting signal provided by X in these 
situations was not disregarded, as would be suggested by the 
causal Markov condition. 

 

 
Figure 3: Mean and SD of the mean choice proportions 
(Normative: Bars indicate best fit normative CGM; Line plots 

indicate normative prescriptive predictions independent of data) 
 
Individual differences in the common effect structures 

arise primarily due to differences in the inferred rotation 
parameters. The mean of the posterior samples for the 
rotation parameters was θX = 54° and θZ =43° for causal 
reasoners and θX = 23° and θZ = 27° for associative 
reasoners. Note that the rotations do not reveal the direction 
of causality but the strength of the bidirectional association 
between the variables (lower rotation implies higher 
associative strength). Thus, the significantly lower inferred 
value for θX for associative reasoners signifies the increased 
influence of x1 (as the projected value from x1 to y1 
increases), which in situation A would lead to anti-
discounting behavior as empirically observed. The higher 
inferred value of θX (specifically, greater than π/4) for 
causal reasoners implies discounting, since any projection 
from x1 to y1 would have a much smaller amplitude.  

Conclusion 
We showed how a QP model can account for violations of 
normative properties observed in a causal reasoning task, 
and how its parameters of the model could be interpreted 
from a cognitive perspective. Implementing a QP model 

within a hierarchical Bayesian inference framework allowed 
us to develop such a latent classification model with a high 
level of accuracy as well as compute Bayes factors to 
compare the QP model to a baseline CGM model. Future 
work will involve implementing more sophisticated CGM 
and Bayes net models into a similar framework so that these 
can explicitly be tested against the QP model.  
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