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Abstract

We present motivation and practical steps necessary to find parameter estimates of joint
models of behavior and neural electrophysiological data. This tutorial is written for re-
searchers wishing to build joint models of human behavior and scalp and intracranial elec-
troencephalographic (EEG) or magnetoencephalographic (MEG) data, and more specifically
those researchers who seek to understand human cognition. Although these techniques could
easily be applied to animal models, the focus of this tutorial is on human participants. Joint
modeling of M/EEG and behavior requires some knowledge of existing computational and
cognitive theories, M/EEG artifact correction, M/EEG analysis techniques, cognitive mod-
eling, and programming for statistical modeling implementation. This paper seeks to give an
introduction to these techniques as they apply to estimating parameters from neurocognitive
models of M/EEG and human behavior, and to evaluate model results and compare models.
Due to our research and knowledge on the subject matter, our examples in this paper will
focus on testing specific hypotheses in human decision-making theory. However most of the
motivation and discussion of this paper applies across many modeling procedures and ap-
plications. We provide Python (and linked R) code examples in the tutorial and appendix.
Readers are encouraged to try the exercises at the end of the document.
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Magnetoencephalography (MEG), Psychology, Neuroscience

1. Motivation to model1

Joint modeling, or models that link distributions from multiple modalities, are useful2

tools for studying cognition (Teller, 1984; Hanes and Schall, 1996; Schall, 2004). There is3

considerable value to joint modeling in M/EEG measures to behavioural data to answer4

∗Corresponding author
Email address: m.d.nunez@uva.nl (Michael D. Nunez)

Preprint submitted to Behavior Research Methods January 23, 2024



questions about cognition. Fitting joint models of M/EEG and human behavior have been5

used to answer diverse questions about cognitive topics such as working memory (Zhang6

et al., 2018), reinforcement learning (Frank et al., 2015; Swart et al., 2018), cognitive abilities7

(Schubert et al., 2019), and even the study of dyslexia in children (Manning et al., 2021).8

Schubert et al. (2019) show that neural processing speed, as reflected in stimulus-locked EEG9

measures, describes variation in cognitive task performance across individuals. In another10

study, Nunez et al. (2015) show that EEG measures of attention can reveal how individual11

differences in visual attention affect differentiable cognitive components of decision-making.12

What do we hope to achieve by finding parameter estimates of joint models of M/EEG13

and human behavior? We could use these parameter estimates to draw conclusions about14

a scientific hypothesis, to help differentiate between theories, to find models that best pre-15

dict human behavior and brain dynamics, or to teach students how to fit models to data.16

Researchers may also find intrinsic value in using joint modeling of M/EEG versus other neu-17

roimaging modalities such as fMRI due to the high temporal resolution and often a shared18

scale with behavioral data measured in time, e.g. a shared scale of seconds after a stimulus19

between M/EEG and response time measures. While the possible goals that could be realized20

by joint modeling of M/EEG and human behavior are numerous (e.g. see Kording et al.,21

2018), most researchers who fit joint models will seek to either (1) test specific hypothe-22

ses or differentiate theories in fields such as Neuroscience and Psychology or (2) maximize23

prediction of M/EEG signals and/or human behavior. Sometimes these two goals can be24

simultaneously realized, but maximizing prediction of M/EEG and human behavior is often25

best achieved with atheoretical approaches based in Machine Learning (ML) or Artificial26

Intelligence (AI). ML and AI are best used in scenarios where maximizing prediction is most27

important and understanding the cognitive process is not critical, for instance in many Brain28

Computer Interfaces (BCIs).29

In this tutorial we will focus primarily on joint modeling for testing specific hypotheses.30

The diversity in methods used to perform joint modeling of M/EEG and behaviour is large.31

The studies mentioned above include a variety of methods to perform joint modeling. There32

are also many related studies that correlate cognitive model parameters to observed M/EEG33

measures or correlate observed behavioural measures to computational parameters of EEG34

(e.g. O’Connell et al., 2012; Gluth et al., 2013; Jagannathan et al., 2021). Our intention in35

this tutorial is not to review all cognitive topics (e.g. see Hawkins et al., 2023) nor all joint36

modeling techniques of M/EEG and behaviour (e.g. see Palestro et al., 2018). Instead we37

will focus on clarifying common modeling examples, EEG data collection and analysis, and38

tools to implement joint models. We will cover experimental design, M/EEG analysis and39

behavioral analysis techniques necessary for joint modeling, as well as the modeling itself.40

Due to our research and knowledge on the subject matter, our examples in this paper will41

focus on testing specific hypotheses in human decision-making theory. However all techniques42

and software presented here can be applied to testing any formal hypotheses involving the43

relationship of M/EEG to human cognition and behavior.44

We expect a diversity in readership of this tutorial from different disciplines. We pri-45

marily expect readers trained in two different sub-fields, namely, Cognitive Neuroscience46

and Mathematical Psychology. Therefore, some readers may find certain sections introduc-47

tory. Readers trained in Cognitive Neuroscience should place increased focus on Sections48

2 and 5, which give the motivation and techniques for modeling, while readers trained49
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in Mathematical Psychology should focus on Sections 3 and 4 that provide experimen-50

tal motivations and the theory and practice of M/EEG. Other readers may need to read51

the entire tutorial carefully, as well as follow the references in Further readings (located52

at the end of the paper) corresponding to each main Section if looking for more back-53

ground or depth on a certain topic. Finally, we encourage readers to read and run the54

provided example scripts in either Python (https://github.com/mdnunez/pyhddmjags) or55

R (https://github.com/kiante-fernandez/Rhddmjags) and work through the Exercises56

at the end of the document.57

1.1. One example topic: Decision-making58

One topic of interest is whether specific M/EEG signals reflect cognitive components of59

decision-making. This has been the focus of a large body of previous work (e.g. see O’Connell60

et al., 2018) including our own work (see Figure 1, Lui et al., 2021). This work has lead61

to specific testable questions that can be answered with joint modeling of M/EEG data,62

response time data, and choice data from tasks in which participants make simple decisions.63

However before we discuss this example of joint modeling work, let us first briefly review a64

key theory of decision making.65

Sequential sampling models assume that humans and animals accumulate evidence for a66

particular choice over the course of a decision by sampling from external or internal evidence.67

This evidence for a decision is usually considered a cognitive representation or a direct neu-68

ral representation (e.g. changing firing rates of neurons over time). Simulating and fitting69

sequential sampling models are particularly useful for understanding quick decisions on the70

scale of seconds. These models make predictions about the time course of decision-making,71

while other decision-making models, such as Signal Detection Theory (SDT; Hautus et al.,72

2021) do not make any predictions about the time course of decision-making. Drift-diffusion73

models (DDMs; Ratcliff, 2018) are a particular class of sequential sampling models that74

assume a Wiener process of evidence accumulation. A Wiener process of evidence accumula-75

tion is a random walk process with an infinitesimal (infinitely small) time step (see middle of76

Figure 1). However, note though that DDMs and associated model-variants are often used77

due to the models’ mathematical utility, rather than a theoretical belief that a time step of78

evidence accumulation should be infinitesimal in the brain.79

Sequential sampling theory leads naturally to specific testable questions that can be80

answered with joint modeling of M/EEG data. Do time-averaged event-related potentials81

(ERPs) encode the demarcation point between visual encoding and evidence accumulation82

(Nunez et al., 2019a)? Do motor preparation signals over the motor cortex track evidence83

accumulation time (Lui et al., 2021)? How do EEG measures of visual attention affect84

the decision-making process, and in what precise way does visual attention affect different85

computational components of decision-making (Nunez et al., 2015, 2017)? A table of related86

questions that can be answered with neurocognitive models using DDMs can be found in87

Table 1. There exist multiple analysis methods to help answer these questions with EEG88

and behavior (see Bridwell et al., 2018). However we have preferred to use the implementation89

of joint modeling of EEG and human behavior to understand data from participants who90

performed hypotheses-differentiating experiments.91
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1.2. One example question: Do EEG signals encode sequential-sampling of evidence?92

One more specific question is whether EEG signals encode a sequential-sampling of ev-93

idence, such has been found in single neurons and neural populations within intracranial94

recordings of the lateral intraparietal (LIP) cortex and superior colliculus (SC) of the macaque95

brain during single experimental trials (Roitman and Shadlen, 2002; Shadlen and Kiani, 2013;96

O’Connell et al., 2018; Jun et al., 2021). EEG signals time-locked to specific events such as97

the onset of a visual stimulus, e.g. the P300 / Centro-Parietal Positivity (CPP) waveform,98

and EEG signals time-locked to the response, e.g. the Readiness Potential (RP), have been99

proposed to be related to evidence accumulation and the timing of decisions (O’Connell100

et al., 2012; Gluth et al., 2013; Twomey et al., 2015; van Ravenzwaaij et al., 2017; Lui et al.,101

2021). We expect future joint modeling work will further help differentiate whether these102

signals are exactly encoding evidence accumulation, correlated processes, or mixtures of sig-103

nals (Philiastides et al., 2014). Related questions that can be answered with joint modeling104

work are: (1) what EEG preprocessing steps and recording procedures should be used to best105

extract evidence accumulated related signals? and (2) for what specific conditions and task106

paradigms these signals encode evidence accumulation? In this paper we show how com-107

bining these specific EEG signals and behavioural data in neurocognitive modeling will lead108

to better and more extensive knowledge of individual differences and single-trial estimates109

of human cognition. In our example methods presented in this paper, we build models and110

present model fitting procedures that can best answer the question of whether EEG signals111

encode a sequential-sampling of evidence.112

2. Models to describe joint data113

2.1. The basic terms of modeling114

Cognitive models include parameters of psychological processes that describe human (or115

animal) behavior. These models are often used to describe behavior in psychological experi-116

ments or natural environments, and these models are often developed by researchers in the117

scientific field of Mathematical Psychology. A parameter of a cognitive model is a variable118

that can take a pre-specified range of values that describe data, and multiple parameters119

of a model are usually required to describe data. The parameters of cognitive models often120

directly relate to unobserved psychological concepts such as memory capacity or general cog-121

nitive ability (Lee et al., 2019; Schubert et al., 2019). Signal Detection Theory (SDT) that122

explains choice and accuracy data could be considered a cognitive model since it contains two123

parameters that describe both the ability and choice bias of a human participant (Hautus124

et al., 2021). Another example are Drift-Diffusion Models (DDMs) of choices and response125

time (RT) data during human decision-making, which contain cognitive parameters that de-126

scribe speed-accuracy trade-offs, speed of evidence accumulation for one choice or another,127

and decision biases (Ratcliff et al., 2016). The cognitive interpretations of parameters of128

new cognitive models should be tested by experimentation with differentiating experimen-129

tal conditions (discussed below). However some widely-used cognitive models, such as SDT130

and DDMs, have parameters whose cognitive interpretations are now widely accepted by re-131

searchers due to the results of multiple experimental studies. For instance, Voss et al. (2004);132

Dutilh et al. (2019) generally found that parameters of DDMs (namely speed-accuracy trade-133

off parameters, non-decision time parameters, evidence accumulation rate parameters, and134
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Figure 1: A theoretical representation of some modeling studies to discover cognitive mechanisms of decision-
making using neurcognitive modeling of EEG and human behavior during decision-making tasks. Bold text
represents observed data (EEG measures or human behavioral data) while italic text represents derived cogni-
tive parameters that can be estimated through joint modeling. Event-Related Potentials (ERPs; represented
by 3 waveforms beginning at the cartoon image of the brain in the top right) and frequency-domain EEG
measures (bottom left: EEG amplitudes that were spline-interpolated between electrodes on a flat represen-
tation of the human scalp) have been used in joint modeling to understand human cognition in the context of
Neurocognitive Drift-Diffusion Models (NCDDMs). Human behavioural data such as choice-RTs (response
time distributions shown for correct responses, top, and error responses, bottom flipped) are also used to fit
NCDDMs and Drift-Diffusion Models (DDMs). In NCDDMs, like DDMs, correct and error responses are
described after enough cognitive evidence is reached, representing by the cognitive evidence accumulation
passing one of two boundaries during decision time (this trial represented as a black line with two other grey
lines representing other simulations from the same process that describe response times and possibly EEG
potentials). Particular ERPs of interest are N200, P300 / CPP, and RP waveforms. N200 waveforms are
thought to reflect visual encoding time (VET) and the onset of evidence accumulation (Nunez et al., 2019a).
The P300 or Centro-parietal positivity (CPP) are thought to reflect decision time (DT) and possibly the ev-
idence accumulation process itself (O’Connell et al., 2012; Kelly and O’Connell, 2013; O’Connell et al., 2018;
van Ravenzwaaij et al., 2017). The Readiness Potential (RP) is a motor related preparatory signal thought
to reflect DT and motor execution time (MET) under certain experimental conditions (Lui et al., 2021).
Steady-state visual evoked potentials (SSVEPs) can be used to estimate visual attention and in particular,
signal enhancement and noise suppression that could affect the rate and variance of evidence accumulation
(Nunez et al., 2015). A table of related questions and other neurocognitive work using DDMs can be found
in Table 1.



evidence bias parameters) that describe human choice and response time are all manipulated135

in expected directions by proper experimental conditions. Although these experimental ma-136

nipulations are not perfect, and they often affect other cognitive parameters (Dutilh et al.,137

2019), these prior results allow us to draw conclusions in new data while assuming some of138

these parameters map onto the expected cognitive function.139

Cognitive models are sometimes defined differently from computational models. Compu-140

tational models often focus on modeling brain dynamics with parameters that have specific141

neural correlates (Blohm et al., 2020; Glomb et al., 2021) (a short discussion of M/EEG142

generators can be found in the Discussion section). Typically computational models are143

used in the scientific field of Computational Neuroscience. Though computational models do144

not necessarily include parameters with interpretable psychological processes. However, be-145

cause computational models may describe human behavioral data, the term “computational146

model” is sometimes used more broadly to encompass cognitive models as well (e.g. Wilson147

and Collins, 2019).148

Neurocognitive models are joint models of brain activity and human behavior that seeks to149

combine cognitive modeling with necessary links between (1) brain dynamics as measured by150

or derived from M/EEG, (2) cognition and other psychological concepts expressed as formal151

models, and (3) human behavioral data. As a generalization, with neurocognitive modeling152

we seek to understand how macro-level neurophysiology (as measured by scalp-recorded EEG,153

MEG, or even depth-recorded EEG) encodes human cognition which gives rise to human154

behavior. For instance, evidence accumulation is a cognitive process during decision-making,155

but may also have direct neural correlates in EEG (Forstmann et al., 2016; O’Connell et al.,156

2018; Lui et al., 2021), and thus drift rates of DDMs could describe choice-RT distribution157

shapes, evoked EEG potentials, or both simultaneously. Thus these neurocognitive models158

can be used to develop and test theories in both Psychology and Neuroscience. Specifically159

we focus in this paper on how modeling can be used to directly test hypotheses which involve160

observed M/EEG dynamics, human cognition, and human behavior. Note that neurocognitive161

modeling is less defined than joint modeling, as is defined more specifically for certain classes162

of neurocognitive models (see Turner et al., 2017; Palestro et al., 2018). In the next section163

we describe three examples of neurocognitive models, and Models 2 and 3 could be considered164

joint models in the labeling scheme of Turner et al. (2017) and Palestro et al. (2018).165

When simulating models, parameters are fixed to certain values and a model generates166

synthetic data using programs such as R and Python that could be compared to real data.167

For instance, a neurocognitive model ) with multiple user-defined parameters could generate168

synthetic (but informative) EEG potentials, choices, and response times. To fit a model169

is to discover a set of parameter estimates that best describe known data given the model170

architecture and assumptions. Fitting a model using Bayesian methods means finding pa-171

rameter uncertainties from which parameter estimates can be derived. Fitting models to172

data is a useful method to test hypotheses either (1) by directly estimating and then evalu-173

ating parameters (e.g. compare parameter estimates across experimental conditions) or (2)174

comparing multiple models’ ability to describe data.175

2.2. Translating neurocognitive theory into mathematical models176

Often modeling involves simplifying the broader mathematically-defined theories of the177

brain and human behavior to fit data accurately and efficiently. In this way theory, or an178
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approximation of theory, can be used to answer questions directly. Fitting models to EEG179

and behavioral data requires (1) knowledge of cognitive or neurocognitive theory, and (2)180

effort to quantitatively formalize the hypotheses to be tested in the context of theory. Good181

theory should be quantitatively defined (Oberauer and Lewandowsky, 2019a), and the best182

theory is precisely mathematically defined (Guest and Martin, 2021). Although many other183

qualifications may be needed for good theory, these are discussed elsewhere (e.g. van Rooij184

and Baggio, 2020).185

A model should be able to be written as a series of mathematical equations and statistical186

distributional statements that describe the data. Let us assume that a participant, Roos,187

wore an EEG cap while playing a simple video game where she made a correct or incorrect188

answer on multiple trials of the game. Researchers extracted EEG and behavioral data from189

the data collection hardware and are now interested in how the Centro-Parietal Positivity190

(CPP) rise over time within a trial (e.g. the CPP “slope”) influences accuracy and response191

times (RTs). Note that the CPP slope is a signal in the EEG that is found after the onset192

of visual stimuli, and is thought to be a reflection of the computation of visual evidence in193

the brain (O’Connell et al., 2012; O’Connell et al., 2018). Specifically the researchers are194

interested in how three measures from Roos are related: CPP slopes, accuracy, and RTs.195

The researchers obtain observations of each of the three measures on every trial of the game.196

One simple joint model could just assume that RTs and accuracy are influenced by the CPP197

slope. Thus a simple model (Model 1) would just be two attached models, linear regression198

and logistic regression. Let CPP slope be denoted by the variable c, accuracy be denoted by199

x, and response times be denoted by r. Note that accuracy x can be either 0 or 1, and that200

x, r, and c can vary on every trial i and by participant j. The parameters of the model can201

change by participant j. Researchers can then fit this model to Roos’ data as well as other202

participants.203

rij ∼ Normal(θ0j + θ1jcij, σ
2
j ) (1)

xij ∼ Bernoulli(pj) (2)

log
( pj

1− pj

)
= γ0j + γ1jcij (3)

Note that the symbol ∼ denotes distributed by, so that response times r come from a204

normal distribution with a mean parameter that changes with a linear function of CPP205

slopes c and variance σ2. This equation represents simple linear regression. The second206

distributional statement and the last equation represent logistic regression. We picked the207

logit (“log-odds”) function logit(p) = log(pj/1−pj) within the logistic regression framework,208

although we could use any function that maps probabilities bounded from 0 to 1 to the209

continuous (−∞,∞) scale. The θ and γ parameters in this model provide the relationship210

of EEG measure to behavior. Note that we can test whether the θ1 and γ1 parameters are211

near zero in order to test many hypothesized relationships between CPP slope and behavior.212

Alternatively, we could compare the fit of the behavioral data in this model to a model where213

the EEG does not influence the data generators. In a comparison model, response times and214

accuracies would be described only by the mean and probability parameters (e.g. setting θ1215

and γ1 both to 0 before model fitting). Note that Model 1 does not assume EEG reflects any216
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particular type of cognition or computation. However our example question is more specific217

about the type of computation and cognition the CPP slope could reflect. Namely, that218

CPP slope reflects evidence accumulation speed. Model 1 assumes that any relationship219

is linear between CPP slopes and response times as well as CPP slopes and log odds of220

accuracies. Fitting Model 1 will likely yield information about the existence of a CPP-221

behavior relationship because linear and logistic regression are useful in finding relationships222

where there is some true relationship between variables. Model 1 would be particularly223

helpful if we wanted to test if there was any possible relationship in an exploratory analysis.224

Researchers instead might want to directly test whether the CPP slopes reflect specific225

cognitive components of decision-making that describe both the accuracy and response time226

jointly. A second model (Model 2) could then test simple linear relationships to cognitive227

parameters. In particular we might be interested in how CPP slopes describe the drift-rate228

parameters δ and the non-decision time parameters τ . The drift rate δ reflects the mean229

rate of evidence accumulation for each infinitesimal time step of a Wiener process (Ratcliff230

et al., 2016). Non-decision time τ on every trial is any time in a response time not due to231

a Wiener process (such as visual encoding time; VET). Lets assume that δ and τ can vary232

on every experimental trial. We also assume that other parameters of a DDM do not vary233

with CPP slope and are fixed across trials, namely: the boundary separation parameter αj234

which describes the amount of relative evidence to make a correct choice, the initial bias235

parameter βj towards the correct choice before evidence accumulation occurs, and trial-to-236

trial variability in drift rate, ηj, that is not due to CPP slope variability. This DDM describes237

both response times r and choices x per participant j and trial i.238

(rij, xij) ∼ DDM (δij, τij, αj, βj, ηj) (4)

δij = ξ0j + ξ1jcij (5)

τij = λ0j + λ1jcij (6)

Note that the parameters ξ and λ have different meanings in this model with embedded239

cognitive components compared to the θ and γ parameters in the previous model. The240

parameters ξ and λ are the intercept and effect parameters of the CPP slopes on the evidence241

accumulation rate and non-decision time respectively. We will call this model a neurocognitive242

model because it assumes particular types of cognition during decision making and contains243

neural data, in addition to behavioral data. We have fit this class of model, which assumes244

single-trial EEG measures describe single-trial DDM parameters, in previous work (Nunez245

et al., 2017, 2019a).246

Another class of neurocognitive models involves describing the cognitive parameters through247

the EEG measures themselves. For instance, we can directly test the underlying computa-248

tional role of the CPP slope in cognition by testing how well the following model fits the249

data once parameters are estimated and how well this model predicts new data. In Model250

3, the mean of each trial’s CPP slope c is described by the drift rate for each participant j.251

(rij, xij) ∼ DDM (δj, τj, αj, βj, ηj) (7)

cij ∼ Normal(δj, σ
2
j ) (8)
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such that five cognitive parameters of a DDM, δ, τ , α, β, and η vary by participant j. Note252

that one of those cognitive parameters, the mean rate of evidence accumulation across trials δ253

is also a computational parameter, a parameter that describe neural data in a computational254

model define above, that describes the CPP slope on every trial i and each participant255

j. There is one more additional computational parameter in this model that describes the256

observation noise of the CPP slope on every trial i, parameter σ for each participant j. This257

model is similar to, although more specific than, a model previously used by van Ravenzwaaij258

et al. (2017).259

Better neurocognitive models might extend Model 3 by describing the CPP slopes from260

a function of multiple cognitive parameters, for instance. Other models could contain compu-261

tational parameters that reflect brain dynamics that are described by cognitive parameters.262

Different modeling strategies are discussed by Turner et al. (2017). All of the example models263

and other joint models can be simulated through the equations listed and by choosing a set264

of values for parameters. We can build a variety of neurocognitive models to test specific265

theories.266

2.3. The importance of model simulation267

Model simulation is usually the first step in generating new models, and can be helpful268

in understanding the neurocognitive theory. Model fitting intrinsically makes many assump-269

tions about the data. Joint modeling of M/EEG and behavior will make assumptions about270

cognitive and computational processes in the brain and implicit assumptions about what271

cognitive and computational processes are not occurring. These assumptions will affect pa-272

rameter fitting results significantly. It is therefore imperative that the researcher understand273

what assumptions they are making and how those assumptions can be violated.274

The best way to explore these assumptions is through the two-step process of (1) sim-275

ulation of models using different model types and realistic parameter ranges and then (2)276

fitting all the simulated data using the specific model and fitting procedure to be used in the277

analysis of real data. Simulations can show the researcher under which conditions the fitting278

procedure can break or produce spurious results. Simulation of models, as opposed to fitting279

of models, is also one way to formally define the underlying theory to be tested, in that it is280

quantifiable, and perhaps complex, but rigorously defined (Guest and Martin, 2021).281

To simulate joint models of M/EEG, it is best to write the model using existing statistical282

libraries with coding languages such as Python or R. We reproduced one possible simulation of283

Model 3 here. A code snippet of Model 3 is provided in Code Block 1 with associated full284

Python and R code located at https://github.com/mdnunez/pyhddmjags/blob/master/285

simpleCPP_sim.py and https://github.com/kiante-fernandez/Rhddmjags/blob/main/286

R/Rhddmjagsutils.R respectively as of July 2023. We first generate random values of all287

parameters for one participant. We then simulate data for all trials i for this participant from288

those parameters within the two equations of Model 3 in a for loop. Our code simulates the289

model directly from an approximation of the Wiener process in line 9 (specifically approxi-290

mated using the Euler method, see Brown et al., 2006). The approximation can be thought291

of as a random walk process with a very small time step that loops over nsteps (line 8),292

until the random walk passes the upper boundary alpha (line 11) or lower boundary 0 (line293

16). This is especially useful for observing simulations of the evidence paths on every trial294

(see top left of Figure 2). Our code also simulates the CPP observations themselves from a295
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Table 1: A table of example hypotheses that could be tested directly using neuro-cognitive Drift Diffusion
Models (DDMs) of M/EEG and behaviour. Each hypothesis is derived directly from existing literature in
the fields of Cognitive Neuroscience and model-based Cognitive Neuroscience. Each cognitive mechanism is
associated with a specific computational role in the human brain that is measured with a M/EEG neural
signature that is hypothesized to be reflected in the relationship with a cognitive parameter of a DDM. δ
refers to the drift rate parameter, τ refers to the non-decision time, τv refers to visual encoding time (a
component of non-decision time) τm refers to motor execution time (another component of non-decision
time) α refers to the boundary separation parameter, β refers to the initial bias parameter, ς refers to the
diffusion coefficient (undiscussed in this text but discussed in Ratcliff et al., 2016; Nunez et al., 2017, and
elsewhere).

Cognitive
Mechanism

Computational
Role

Neural
Signature

DDM
Parameters

References

Visual
evidence
accumulation

Evidence
accumulation
rate

P300 slopes δ (Philiastides et al., 2006;
Ratcliff et al., 2009;
Philiastides et al., 2014;
Twomey et al., 2015; van
Ravenzwaaij et al., 2017;
Kohl et al., 2020)

Subjective-
value
evidence
accumulation

Evidence
accumulation
rate

Gamma
(46–64 Hz)
power

δ (Polańıa et al., 2014)

Figure-
ground
segregation

Visual encoding
time (VET)

N200
latencies

τ / τ v (Loughnane et al., 2016;
Nunez et al., 2017, 2019a;
Ghaderi-Kangavari et al.,
2022, 2023a)

Motor
execution

Motor execution
time

Beta (15-25
Hz) desyn-
chronization

τ / τm (Crone et al., 1998;
McFarland et al., 2000)

Motor cortex
preparation

Motor evidence
accumulation

Readiness
Potentials

δ (Gluth et al., 2013; Lui
et al., 2021)

Speed-
accuracy
tradeoff

Changing neural
threshold

Theta (4-7
Hz) power

α (Cavanagh et al., 2011;
Frank et al., 2015)

Strategy
adjustment

Changing neural
threshold

Contingent
Negative
Variation

α (Boehm et al., 2014)

Prestimulus
activation

Bias Occipital
EEG
amplitude to
predict choice

β (Bode et al., 2012)

Visual
attention

Variability in
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(diffusion)

Steady-state
visual evoked
potentials

δ, ς (Nunez et al., 2015;
Rangelov and Mattingley,
2020)

Attentional
gating

Internal neural
noise

Alpha (8-12
Hz) power

ς (Pfurtscheller et al., 1996;
Jensen and Mazaheri, 2010;
Klatt et al., 2020)



sine wave (line 6), commonly used for simulating oscillatory signals (Cohen, 2014), with 1/4296

of the period of the sine wave being the CPP slope (see bottom left of Figure 2). Protocols297

for simulating EEG data range in biological and physical plausibility, however sine waves are298

a common starting point for simulating EEG activity (Cohen, 2014; Hagen et al., 2022; Næss299

et al., 2021), see also the section on modeling of M/EEG generators in the Discussion of this300

paper.301

1 plot_time = np.linspace(0, step_length * nsteps , num=nsteps)302

2 for n in range(0, ntrials):303

3 random_walk = np.empty(nsteps)304

4 drift = stats.norm.rvs(loc=delta , scale=eta)305

5 cpp_slopes[n] = stats.norm.rvs(loc=delta , scale=sigma)306

6 CPPs[:, n] = np.sin(2 * np.pi * (( cpp_slopes[n] / 4) * (plot_time -307

ndt)))308

7 random_walk [0] = beta * alpha309

8 for s in range(1, nsteps):310

9 random_walk[s] = random_walk[s - 1] + stats.norm.rvs(311

10 loc=drift * step_length , scale=varsigma * np.sqrt(step_length)312

)313

11 if random_walk[s] >= alpha:314

12 random_walk[s:] = alpha315

13 rts[n] = s * step_length + ndt316

14 choice[n] = 1 # Correct choice shown with positive RTs317

15 break318

16 elif random_walk[s] <= 0:319

17 random_walk[s:] = 0320

18 rts[n] = s * step_length + ndt321

19 choice[n] = -1 # Incorrect choice shown with negative RTs322

20 break323

21 elif s == (nsteps - 1):324

22 rts[n] = np.nan325

23 choice[n] = np.nan326

24 break327

Code Block 1: Python code from simulation of Model 3

When simulating a model it is useful to plot elements of the model itself. For instance in328

Figure 2 we have plotted dynamics of the model itself, namely the CPP waveforms on single-329

trials and the evidence paths themselves. We have also plotted the distributions of both the330

choice response times and the CPP slopes. We can also choose to plot other diagnostics such331

as the cumulative distribution function, and return specific statistics about our simulated332

data (e.g. mean, median, maximum, and minimums). In this way we can make sure our333

model, and quantitatively defined theories, are logical and could describe real data. Note334

however that we may not observe everything about our model in real data nor be able to335

estimate everything about our model from the data. For instance, we may never observe336

the cognitive evidence paths themselves (top left of Figure 2) in real data. Later, after337

we discuss model fitting, we will discuss how we can also use simulations to test parameter338

recovery. We will show that fitting Model 3 to data is indeed useful.339

11



Figure 2: Diagnostic plots of the simulation of Model 3. We simulated Model 3 using the provided
Python code with 1000 trials for one participant. The top left figure is the simulated evidence accumulation
paths from a Wiener process that reaches one of two boundaries to make a decision. The top right figure
is the estimated density of incorrect and correct response times, with incorrect response times plotted as
negative response times. The bottom left figure is the simulated CPPs on single-trials using a simple sine
wave. The bottom right figure is approximated density of the simulated CPP slopes. This density should be
approximately normal because of our modeling assumption for CPP slopes.



3. Experimental manipulations and experimental design340

The goal of experimentation should be to design experimental conditions that best answer341

scientific questions. In this section we will focus on experiments that are optimally designed342

to produce data for use with joint modeling. One particular neurocognitive theory suggests343

that a particular trial-averaged EEG signal, the CPP, in response to the onset of a picture344

on a computer screen is expected to be a neural signature of evidence accumulation during345

decision-making based on that picture. For example, the CPP reflects evidence accumulation346

to decide whether a noisy picture is a face or a car (e.g. Ostwald et al., 2012). This is a theory347

suggested by experimental and theoretical work by O’Connell et al. (2012); O’Connell et al.348

(2018), previously mentioned. Thus we should design experiments to collect M/EEG and349

behavioral data and/or pick an existing data set that (1) best test the hypothesis and (2)350

test the limits of this hypothesis.351

3.1. Hypothetical Experiment 1352

We know that drift rates in perceptual decision making tasks are affected by perceptual353

difficulty (Voss et al., 2004; Dutilh et al., 2019). Therefore if CPPs are signatures of the354

computational mechanism of evidence accumulation in the brain, we expect drift rates and355

CPP slopes to both change across perceptual difficulty conditions, and specifically maintain356

the same relationship across many experimental conditions of various difficulty. For instance357

participants could perform a Random Dot Motion (RDM) task with many different levels of358

perceptual difficulty across trials, a replication of work by Kelly and O’Connell (2013). An359

RDM task is a task in which a field of moving dots appears on each experimental trial, with360

a (typically small) percentage of dots moving in a specific direction (e.g. see Newsome and361

Pare, 1988; Gherman and Philiastides, 2018). Typically participants must choose between362

one of two directions. If all the dots moved together on the screen, the task would be too363

easy and would not result in different performance across conditions, not optimally testing364

our neurocognitive theory. Therefore the other percentage of dots typically move completely365

at random with no orientation information. The percentage coherence of dots describes the366

percentage of dots that move in the correct orientation. Therefore let us imagine a task in367

which trials are intermixed with 32%, 16%, 8%, 4%, and 0% coherence values. Note that the368

difficulty of the coherence values will depend, among other factors, on the size of the dots in369

the stimulus and the size of the entire stimulus for the participant.370

We can fit the data from Experiment 1 to Model 2 for each experimental condition371

k, allowing each parameter and data type to vary by condition k. By comparing param-372

eter estimates of the slope parameter ξ1jk across the two conditions, we can test whether373

there is a fixed linear relationship between the slope of the CPP and the drift rate in all374

experimental conditions, even when other parameters such as the drift-rate δ itself change375

across experimental conditions. Specifically we could develop statistical tests to test whether376

ξ1j1 = ξ1j2 = ξ1j3 = . . . = ξ1jK from the resulting parameter estimates in all participants, for377

instance, we could analyze posterior distributions of these parameters to calculate posterior378

probability or Bayes Factors (see below). Alternatively we could compare how two models379

explain the data and predict new data. For instance, we could compare Model 2A to Model380

2B, where Model 2A has fixed effect parameters ξ1j across conditions and Model 2B has381

effect parameters ξ1jk that are free-to-vary across conditions.382
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The number of trials and participants to collect in order to answer this question should383

depend on a power analysis (not to be confused with the concept of EEG power in the next384

section). We define a power analysis as any simulation-based or statistical theory-based385

analysis that will give an estimate of either the Bayesian or classical probability of finding386

true effects (or true null effects) for different sample sizes for specific analyses and joint387

models. For this particular experiment, we recommend fitting the models in simulation (see388

section 5.3. Parameter recovery of simulated models) under the simulated truth where ξ1j1 =389

ξ1j2 = ξ1j3 = ξ1j4 = ξ1j5 for 5 simulated conditions with intercept parameters ξ0jk and τ0jk390

of Model 2 that change over the experimental conditions k. The ultimate planned analysis391

can then be run on the simulated data with different numbers of trials and participants. For392

our particular experimental question, we expect the number of trials to be more important393

than the number of participants (however participant-specific parameters could also be varied394

in simulation). Power analyses are always recommended over rules-of-thumb because each395

experimental question and modeling plan will necessitate different trial numbers. We expect396

that at least 100 to 500 trials per condition are necessary (Lerche et al., 2017). We skipped397

such analyses for this tutorial for the sake of brevity, and encourage readers to work with the398

provided simulation code.399

3.2. Hypothetical Experiment 2400

The first hypothetical experiment demonstrates a simple perceptual manipulation in-401

tended to drive cognition that best answers our hypothesis. In the second hypothetical402

experiment we propose an intervention indented to drive the brain response using transcra-403

nial direct current stimulation (tDCS). While Experiment 1 is a well established experimental404

manipulation, the intervention in Experiment 2 may or may not have any effect on the par-405

ticipants’ brain response, cognition, and behaviour (Chrysikou et al., 2017; Mendes et al.,406

2022). However Experiment 2 is a useful example to show that proper control conditions are407

often necessary to test a hypothesis using joint modeling.408

Because of the aforementioned theory, we might expect tDCS during a visual decision-409

making task to affect both CPP slopes c and evidence accumulation rate parameters (i.e. drift410

rates) δ in DDMs estimated from human behavior. A strong hypothesis is that we expect411

tDCS to affect both CPP slopes and drift rates equally since the theory is that the CPP is412

a signature of the computational mechanism of evidence accumulation in the brain. Thus413

tDCS could test the limits of the theory of the CPP reflecting evidence accumulation. We414

should at least have both (1) an experimental condition and (2) a proper control condition415

in which stimulating tDCS electrodes are applied to the participant’s head.416

In tDCS work an experimental control is often a sham condition in which tDCS is turned417

on then off after a ramping period before a block of experimental trials. This sham con-418

dition seeks to achieve the sensation of tDCS stimulation by the participant for a block of419

experimental trials, but to not actually stimulate during those trials (e.g. see Au et al.,420

2021). We propose an experimental design with one experimental condition (1) in which421

the experimenters stimulate brain areas expected to be involved in decision-making (perhaps422

placing stimulation electrodes on the scalp over parietal cortices), and a control condition (2)423

in which experimenters stimulate brain areas not expected to be involved in decision-making,424

say placing tDCS electrodes on the scalp over the temporal cortex. We could also include425

a different sham condition, another experimental control, (3) in which tDCS electrodes do426
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not stimulate the brain but current is still injected into the body, for instance placing and427

activating tDCS electrodes over the neck musculature in the back of the head.428

We could again fit Model 2B to this data and analyze the results in a similar way to the429

previous experiment. For instance, suppose we fit the data to Model 2B and subsequently430

observe that both CPP slopes c and drift rates δ are significantly increased in condition (1)431

compared to sham condition (3), and that the two effect parameters of the model are equal,432

ξ1j1 = ξ1j3. We also observe that only drift rates δ are significantly increased in condition433

(2) compared to the sham condition (3) and CPP slopes c are similar in both conditions,434

resulting in ξ1j1 = ξ1j3 > ξ1j2. A simulation of this scenario and a simplified fitting procedure435

for Model 2B is included in https://github.com/mdnunez/pyhddmjags/blob/master/436

model2b_experiment2.py. These results would be evidence that the CPP slope reflects437

evidence accumulation only in specific conditions. For instance, this might suggest the the438

CPP only reflects visual evidence accumulation in the parietal cortex, and is not the brain-439

wide cognitive phenomena thought to be reflected in decision-making behavior. Of course,440

we would need further experimentation to test this new, more specific theory. We should441

also build a new joint model to better reflect our new neurocognitive theory.442

3.3. Theoretically informed experiments443

While we should be able to simulate joint models that account for many experimental444

designs, experimental design choices may also be made in preparation for fitting joint models.445

The data from some experimental designs are more easily modelled due to (1) larger bases446

of research knowledge for some specific theories of human cognition and brain signals and447

(2) the availability of algorithms and software packages that allow fitting certain classes of448

models and data. That is not to say that some experimental and modeling work should449

not occur, only that more theoretical development, technical expertise, and/or model-fitting450

algorithm development is needed to answer some questions. Note that the idea of choosing451

experiments based on current states of theoretical knowledge and algorithm availability may452

be somewhat distasteful to researchers who feel that theory and algorithm development453

should occur to explain any collected data. However each of these two intermediate steps454

likely require extensive research (e.g. see Guest and Martin, 2021, for a discussion on theory455

development).456

Discrete choice and response time data resulting from two-alternative forced choice (2AFC)457

experimental tasks, or similar tasks, are known to be easily studied using signal detection458

theory and sequential sampling models. However work on developing models of more complex459

decisions, such as choices in continuous space, is still somewhat new (Smith, 2016; Ratcliff,460

2018; Kvam et al., 2023). And while there is a large body of work on developing models461

for describing choices and response times for more than two alternatives (Busemeyer et al.,462

2019; van Ravenzwaaij et al., 2020; Thomas et al., 2021; Krajbich and Rangel, 2011; Hawkins463

and Heathcote, 2021; Heathcote and Matzke, 2022), models of multi-alternative forced choice464

(MAFC) tasks have not been as widely utilized as models of 2AFC tasks in studies testing465

the influence of experimental manipulations on parameters (e.g. Dutilh et al., 2019) nor in466

studies of stable measurements of individual differences (e.g. Schubert et al., 2016; Lerche467

et al., 2020), with some notable exceptions (e.g. Rouder et al., 2015). If a researcher only468

cares about a scientific question that does not depend on the specific type of choice, then the469

researcher might choose the 2AFC task because of the current state of knowledge. Another470
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concern is that researchers may find model fitting limited to existing packages which lack pro-471

cedures for fitting MAFC and continuous choice tasks. However in the future it is likely that472

MAFC model fitting procedures will be further rigorously tested and more widely applied,473

with new packages being released (e.g. Stevenson et al., 2023; Villarreal et al., 2023). We474

also expect that model fitting procedures will become more flexible in their implementation475

(e.g. see Radev et al., 2020). Furthermore, if the goal is to develop new methods and/or to476

test something specific about multiple alternatives or choices on a continuous scale, then a477

MAFC or continuous choice experimental task would be best.478

Some M/EEG signals will be more easily found (e.g. differentiated from other signals)479

in certain experimental conditions due to prior knowledge from a wealth of literature about480

these signals. For this reason the same experimental tasks are used often in M/EEG research481

and electrophysiology across experiments, such as the Random Dot Motion (RDM) task (e.g.482

see Newsome and Pare, 1988; Gherman and Philiastides, 2018). For instance the Centro-483

Parietal Positivity (CPP) is known to occur in tasks where a visual or auditory stimulus484

ramps up or down in signal intensity, including RDM tasks (O’Connell et al., 2012; Kelly485

and O’Connell, 2013; Rangelov and Mattingley, 2020). Combining all these experimental486

considerations, the best visual stimulus to test a simple hypothesis of the relationship of487

CPP to an evidence accumulation rate during decision-making might be a RDM where the488

participant must differentiate either leftward or rightward motion during each trial (i.e. a489

2AFC task). Note that researchers should not be limited to prior research, and researchers490

should feel free to design new experimental tasks and new experimental designs. Diversity491

of experimental design ideas will always remain important for the growth of the field of joint492

modeling and the growth of knowledge.493

4. Collection and preprocessing of M/EEG for joint modeling494

4.1. Software for processing of M/EEG data495

The software for both preprocessing and analysis of M/EEG data are either stand alone496

programs, or based in either the MATLAB (The MathWorks Inc., 2022) or Python program-497

ming languages. This is due to a (likely self-reinforcing) preference of Cognitive Neurosci-498

entists generally for MATLAB and Python over R. EEG analysis packages exist for R, but499

are being still developed and not as widely used, such as eegUtils (Craddock, 2023). We500

recommend using established toolboxes, such as MNE (Gramfort et al., 2013) in Python, or501

FieldTrip (Oostenveld et al., 2011) or EEGLAB (Delorme and Makeig, 2004) in MATLAB.502

Tutorials and many walk-through example analyses are readily available online for all 3 tool-503

boxes. In this section we introduce readers to general principles about EEG analysis. We504

encourage readers to follow the Further readings section and consult specific online toolbox505

manuals if beginning EEG analysis for the first time.506

4.2. Understanding artifactual processes in M/EEG data507

M/EEG contains many overlapping sources of information, including brain-generated508

sources and artifactual sources (Nunez and Srinivasan, 2006; Nunez et al., 2016; Fitzgibbon509

et al., 2016). Due to the complexity and the size of information in collected M/EEG, param-510

eter estimation of joint models of behavior and M/EEG usually requires extraction of specific511

M/EEG signals. One important step in this process is the removal of artifact, specifically512
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muscle-generated electromyographic (EMG) signals, environmental electrical artifacts, and513

physical movement artifacts that are prevalent in scalp-recorded EEG recordings (Whitham514

et al., 2007; Nunez et al., 2016). Unless those artifacts are removed, or specifically accounted515

for in a joint model, these sources of artifact will likely add noise that affects results of joint516

modeling. These artifacts could thus greatly influence the results of neurocognitive models517

in parameter estimates or the results of model comparisons (e.g. see Hawkins et al., 2017).518

Electrical and movement artifacts in scalp-recorded EEG records can be reduced by proper519

recording practices. Usually the goal of these practices is to (1) keep consistent electrical520

contact of the ground and reference electrodes to the scalp, (2) keep consistent electrical521

contact of all other electrodes (or to remove those electrodes from later analysis, if some522

electrodes can be removed without much loss of information, such as in high-density EEG),523

and (3) by removing or shielding external sources of electrical artifact from the area of524

recording. Electrodes with higher impedances typically have larger amplitude environmental525

noise (with large noise amplitudes at 60 Hz or 50 Hz depending upon the place in the world526

in which the recording takes place) that can be removed with online or offline targeted527

filtering (Kappenman and Luck, 2010). But also large impedances can be indicative of an528

electrode that is not making consistent electrical contact with the scalp and could produce529

high amplitude movement artifact. Inconsistent contact of an electrode could lead to sudden530

changes in impedance that can affect EEG records of that electrode. Most commercially531

available EEG systems have easy-to-implement methods of measuring electrode impedance.532

Those electrodes that have very high impedances can be given special attention (using system533

recommended cutoffs depending upon the EEG cap and amplifier), such as making sure that534

the electrode is making stable contact with the skin of the scalp through hair. Unless using535

“dry” EEG systems, an appropriate amount of conductive gel or saline is also important to536

maintain electrical contact. However, it’s also important not to use too much conductive537

solution to avoid electrical bridging (Greischar et al., 2004). We recommend reading some538

of the existing recommendations from various EEG laboratories resources for discussions of539

best practices for EEG data collection (e.g. Farrens et al., 2020; Boudewyn et al., 2023), as540

well as recent work on improving recording practices for different hair types (e.g. Etienne541

et al., 2020).542

In addition to proper recording practices, additional artifact correction is almost always543

performed on EEG data, especially for eye blinks, EMG, cardiovascular-generated electro-544

cardiographic (EKG) signals, and miscellaneous movement artifacts. For joint modeling this545

artifact correction will usually be performed offline, as opposed to BCI applications where546

artifact correction is performed online. Artifact correction is also helpful for magnetoen-547

cephalographic (MEG) and intracranial electroencephalographic (iEEG) records, although548

the prevalence of different types of artifacts will differ across modalities and recording sys-549

tems. Techniques to mitigate artifacts before parameter estimation is especially necessary550

due to the simple assumptions often made intrinsically in many joint models of M/EEG and551

behavior. Because brain generated EEG recorded from the scalp will not manifest as sudden552

large amplitude spikes after filtering by the skull and skin, common offline artifact correc-553

tion techniques include removing epochs of data or specific electrode records that surpass a554

particular amplitude cutoff are useful and basic artifact corrections.555

Another popular method which deserves special consideration is Independent Component556

Analysis (ICA Makeig et al., 1996) for scalp-recorded EEG and MEG. ICA finds linear557
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Figure 3: (From top-left, clockwise) Power spectra, time courses, and spline-interpolated channel weights from
the first twelve Independent Components (ICs). The Independent Component Analysis (ICA) algorithm was
performed on an EEG record in which a participant was fixating on a computer monitor. ICs that are likely
to reflect artifact can be subtracted from the EEG data before neurocognitive modeling. IC1 is indicative of
an eye blink. IC6 and IC7 are indicative of temporary changes in channel impedances. IC12 is indicative of
some muscle artifact. Note this figure is adapted with permission from Figure 4 by Nunez et al. (2016)

.

mixtures across M/EEG channels that are statistically independent as possible by finding558

maximal non-Gaussian mixtures. The resulting components have M/EEG-like times courses559

where, if the time dependency were ignored and the time samples were randomly shuffled, the560

resulting distributions would have minimum mutual information or be separated on the basis561

of kurtosis (Hyvärinen and Oja, 1997; Jung et al., 2000). In practice, these methods often562

yield non-normal mixtures that have distributions with outliers, and thus ICA algorithms563

are especially good at extracting certain artifacts within multiple EEG channels such as564

eye blinks (IC1 in Figure 3), eye movements, EKG, and temporary changes in electrode565

impedances (IC6 and IC7 in Figure 3). Sometimes ICA algorithms can also find some566

EMG artifacts that can be easily identified in the EEG data (IC12 in Figure 3). Often ICs567

are identified manually through visual inspection. However recent algorithms have sought568

to remove some of the subjectivity in IC identification, with specific algorithms (e.g. see569

Mognon et al., 2011) or with Artificial Neural Networks trained on may expert evaluations570

(Pion-Tonachini et al., 2019; Li et al., 2022) – see the first Exercise for additional help on this571

topic. These components can then be extracted from multiple electrodes, and the resulting572

EEG data can be converted back to channel space or be kept in component space for joint573

modeling. EEG components (weighted mixtures of electrodes) are discussed in detail below.574

Note that it is unlikely that all artifact will be removed using these methods, especially575

EMG artifact in scalp-recorded EEG (Whitham et al., 2007; Nunez et al., 2016). So to further576
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avoid artifact in scalp-EEG, it is best to choose specific methods of signal extraction. This is577

typically performed outside of joint modeling, but future researchers may be able to model578

these methods explicitly to retain sources of noise in the model. These methods include579

popular EEG-band limited analyses (e.g. calculating 8 to 13 Hz alpha power over posterior580

electrodes in Ghaderi-Kangavari et al., 2023a) and event-related potential (ERP) analyses581

that mitigate artifactual components through averaging across trials (e.g. N200 latencies in582

Nunez et al., 2019a).583

Finally, M/EEG outliers could drive the entire modeling results. A choice must be made584

between explicit removal and explicit modeling of lapse and artifactual processes. Note585

that there will be differences between artifactual (non-brain generated M/EEG) and brain586

generated M/EEG that is related to some cognitive process but not related to the cognitive587

process of interest. A true neurocognitive reason for an outlier could be, for instance, because588

the participant is mind wandering during that trial (e.g. see Hawkins et al., 2022). It is a589

question for new joint modeling work whether inclusion of non-brain generated M/EEG590

artifactual processes and/or mixtures of cognitive processes within the joint modeling itself591

would be beneficial to understand the researchers’ specific hypotheses and questions.592

4.3. Extraction of relevant M/EEG signals593

In previous research, most researchers have extracted specific EEG signals before joint594

modeling (e.g. Frank et al., 2015; Nunez et al., 2017, 2019a). Targeted extraction of these595

specific EEG signals can be especially beneficial for joint modeling, particularly when those596

signals have a rich literature of prior research and cognitive theory. We will concentrate here597

on popular EEG signals studied within Cognitive Neuroscience.598

Event Related Potentials (ERPs) are defined as averages of M/EEG across experimental599

trials, time-locked to specific events such as the onset of a visual stimulus (a Visual Evoked600

potential; VEP) or the execution of a response such as a button press (a Motor Evoked601

Potential; MEP). ERPs can be computed by simply averaging the M/EEG signals v over N602

trials i such that resulting signal µ varies over a time index t, time-locked to an experimental603

event:604

µt =
1

N

N∑
i=1

vti (9)

ERPs also have rich literature (Luck, 2012, 2022), from which best practices can be605

recommended. This literature can also be used to generate new confirmatory and exploratory606

hypotheses that could be answered with joint modeling methods. After calculation of ERPs607

using the equation above, specific peak latencies, amplitudes, or deviation times from baseline608

are typically extracted, either positive or negative peaks. Common ERPs are the negative609

N200 peak approximately 200 ms after the onset of a visual stimulus in occipital and parietal610

electrodes (sometimes labeled N1 for the first negative peak), recently thought to encode611

the onset of evidence accumulation during decision-making (Nunez et al., 2019a). Another612

common ERP is the positive P300 peak at least 300 ms after the onset of a visual stimulus;613

this ERP is also called the Cento-parietal Positivity (CPP) during specific decision-making614

tasks (Twomey et al., 2015), discussed extensively earlier and used in example Models 2 and615
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3. Common MEPs are the Readiness Potential (RP) and the related Lateralized Readiness616

Potential (LRP) (Gluth et al., 2013; Lui et al., 2021, e.g.). ERPs can also be estimated on617

single-trials (e.g. Nunez et al., 2017; Bridwell et al., 2018; Nunez et al., 2019a).618

Frequency or time-frequency decompositions, such as Fourier and wavelet analyses, are619

also common methods used to extract specific signals in M/EEG (Cohen, 2014). These620

decompositions form the basis of derived measures, such as M/EEG coherence, and typically621

rely on signal to noise ratios. Frequency and time-frequency measures have been used in622

neurocognitive modeling of decision-making (Frank et al., 2015; Polańıa et al., 2014) and623

can be event-locked or stem from endogenous rhythms not related to the timing of the task.624

Many algorithms in high-level programming languages such as the Fast-Fourier transform625

are sufficient to estimate these signals, although best practices in EEG and standard EEG626

conventions should be known (Nunez et al., 2016). Alternatively, there are other algorithms627

developed specifically to extract specific band-limited waveforms, such as finding 80 − 250628

Hz High Frequency Oscillations (HFOs) that last only for a few milliseconds in iEEG data629

(Charupanit and Lopour, 2017; Nunez et al., 2022). One warning for scalp EEG is that630

high frequencies (approx. > 20 Hz) typically contain more EMG artifact (Whitham et al.,631

2007), so care must be taken when interpreting the results of measures derived from high632

frequencies embedded in joint models. Although MEG systems may be more robust to EMG633

artifact (Claus et al., 2012; Muthukumaraswamy, 2013), and newer MEG systems could634

be even more resistant to EMG artifact (Ilmoniemi and Sarvas, 2019). Another caution is635

that researchers have shown heterogeneity in the power bands across and within participants636

(Nunez et al., 2001), as well as heterogeneity in the waveforms themselves (Donoghue et al.,637

2022). Therefore, care must be taken when extracting specific signals for joint modeling.638

Steady-state evoked potentials (SSEPs), and in particular steady-state visual evoked po-639

tentials (SSVEPs) and related steady state auditory potentials (SSAEPs), are a special case640

of band-limited analysis where the frequency band of interest in the M/EEG results from a641

processing stimuli at a certain presentation rates or “flicker” (Regan, 1977). For instance a642

Gabor patch flickering at 15 Hz will result in a large, narrow-band, 15 Hz response (and often643

harmonics of 15 Hz) in EEG. This is the result of the cortex receiving and processing signals644

at this rate, which is expected of a linear system. Some researchers have found evidence645

that endogenous EEG signals may also “entrain” to the stimulus frequencies (Srinivasan,646

2004; Ding et al., 2006). SSEP analyses could be particularly useful for fitting joint models647

because the amplitude or phase-locking across trials is thought to index within individual648

and individual differences in attention (Ding et al., 2006). We have previously explored how649

individual differences in attention as measured by SSVEPs affected cognitive components of650

decision-making (Nunez et al., 2015).651

Typically ERPs, SSEPs, and power in different (time-)frequency bands, are observed652

in replicable scalp and brain locations. These specific EEG signals often have consistent653

cognitive interpretations found in the Cognitive Neuroscience literature, e.g. see Table 1.654

However, the exact electrode/sensor locations will differ from participant to participant, and655

could even change within a participant due to varying artifactual sources and electrical con-656

tact of the electrodes over the course of a long experiment. Furthermore, within the field657

of model-based cognitive neuroscience modeling, there is a need to better utilize overlap-658

ping information in M/EEG data to improve descriptions of cognitive theory (see Borst and659

Anderson, 2015; Bridwell et al., 2018; Weindel et al., 2023). For intracranial EEG (iEEG)660
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spatial filters can also be useful in extracting relevant EEG features for joint modeling (e.g.661

see Schaworonkow and Voytek, 2021). Therefore, weighted averages across channels should662

also be considered. We will refer to these set of analyses as “component analyses” for finding663

mixtures, typically linear mixtures, of M/EEG data that may better reflect the underly-664

ing source components present on the scalp or in intracranial electrode space (Parra et al.,665

2005). Component analyses will extract a weighted average of electrodes/sensors to improve666

the signal-to-noise ratio of mixtures. Previously mentioned Independent Component Analy-667

sis (ICA) is one example algorithm, but other methods like Principal Component Analysis668

(PCA) (e.g. Nunez et al., 2017, 2019a), Canonical Correlation Analysis (CCA) (e.g. van Vugt669

et al., 2012), and explicitly modeling mixtures over electrodes/sensors in joint models can670

also be considered.671

Preprocessing of M/EEG may be theoretically undesirable since extracting specific signals672

often involves removing potentially useful information from the M/EEG signals, which could673

be better accounted for with statistical models in joint modeling. In all our previously674

published work (Nunez et al., 2015, 2017, 2019a; Lui et al., 2021), we extracted specific675

EEG potentials before joint modeling. While these methods are useful for testing specific676

theories of visual attention, motor processing, or visual encoding, they are not as suitable677

for understanding parallel processes that occur during decision-making. The future of joint678

modeling techniques should better account for full M/EEG data to improve prediction and679

hypothesis testing. This can be achieved by embedding mixture models of M/EEG signals,680

either based on brain connectivity and neural network behavior (with a model of electric681

volume conduction to the scalp, see paper by Nunez et al. (2019b)) or through more non-682

parametric methods based on mixtures of oscillating signals.683

5. Implementing model fitting procedures and estimating parameters684

Finding parameter estimates from a proposed model can be difficult. There are many685

more restrictions on parameter fitting than model simulation (due to difficulty in maximizing686

likelihood spaces or sampling from posterior distributions). Many joint models will also not687

be identifiable, as discussed below. However multiple free programs exist to help you fit joint688

models of M/EEG and behavior. Most require some knowledge of a programming language689

and sampling methods.690

5.1. Terms in model fitting691

One term that is often used in model fitting is that of the likelihood. Each distributional692

statement represented with the ∼ symbol in this paper has an associated equation that693

describes the probability of taking certain data values when calculating the integral of the694

equation over a range of possible values. Thus the integral of the function over all possible695

parameters is always 1, indicating that the data being somewhere in the entire possible696

range has probability = 1. This equation, the probability density function (pdf) is called the697

likelihood function L whenever it is considered to vary over parameters for observed data.698

The integral of this function L now no longer represents probability (and the function has a699

different shape), because the function varies over a range of parameters and was not defined700

to represent probability in this way.701
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For instance, if we want to estimate the standard deviation σ of raw EEG data in one702

electrode e over a certain period of time. We could assume that e is distributed normally with703

mean 0 and an unknown standard deviation σ. This is given by the distributional statement704

es ∼ Normal(0, σ2) for each sample s. If we have 1024 samples of EEG es, say 1 second705

of recording with an amplifier that has a sample rate of 1024 Hz, then we could find the706

maximum likelihood estimator by placing those exact data values e (bold indicating a vector707

of data samples es) in a joint pdf, given by individual normal pdfs for each EEG sample708

multiplied together:709

f(σ, e) =
1024∏
s=1

1

σ
√

2π
exp

(
− e2s

2σ2

)
≡ L(σ|e) (10)

Note that even though the likelihood function L for σ is derived from and has the same710

mathematical equation, the shape of this function is not a bell curve over certain values of σ711

for now known data values e because it is now a function of parameters and not data. With712

this likelihood function L we can find a value for σ that describes the maximum likelihood713

by finding the value of σ at the peak L value (e.g. by differentiating the equation and setting714

it equal to zero). This results in a good estimate of the true, never observed, EEG standard715

deviation. Note that, confusingly, this estimate is often called the “standard deviation of the716

data” in conversation. The likelihood function is also used in Bayesian inference, where the717

shape of the posterior distribution over possible parameter values is given by the shape of718

the likelihood function L multiplied by the shape of the prior distribution.719

Most programs to fit joint models have predefined likelihood functions, and only under720

special conditions would you need to write your own likelihood function. This is true in all721

Probabilistic Programming Languages (see below) as well as most other existing programs722

written to fit models. Readers who want additional information, are confused by these723

concepts, or who want to define their own likelihood functions should consult chapters 4 and724

6 of the textbook by Farrell and Lewandowsky (2018) and see additional Further readings725

for this section – found at the end of this paper.726

5.2. Avoiding model complexity727

To test specific hypotheses or compare theories, a perfect explanation of all relevant728

M/EEG signals and behavioral data is often unnecessary and could result in overfitting the729

model (see Navarro, 2019). The degree of complexity needed in the fitted model(s) will730

depend on the goals of the researcher. In DDMs, choosing between two discrete choices is731

assumed to occur due to particular time-varying sampling of relative evidence. The rate of732

sampling of evidence is assumed to change both during a single choice due to within-trial733

variability in a random walk process, but also change across many similar choices, due to734

trial-to-trial variability (Ratcliff et al., 2016). In an experiment with the participant making735

a choice during every experimental trial, expected across-trial changes in the parameters are736

often modeled with across-trial variability parameters. While it is expected that humans do737

have variability in strategy, attention, and response cautiousness, etc. across trials, across-738

trial variability parameters of a full DDM model cannot be easily estimated with behavior739

alone (Boehm et al., 2018). This problem of parameter estimation can be at least slightly740

improved with the addition of EEG signals on single trials (Nunez et al., 2017; Hawkins741
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et al., 2017). Therefore when fitting behavioral data to joint models, we often make the742

choice to fit simple DDM without any across-trial variability in the DDM parameters that743

is not described by the single-trial EEG measures (Nunez et al., 2017, 2019a). Other joint744

modeling research has often included across-trial variability in evidence accumulation rates745

but no other parameters (e.g. Frank et al., 2015; Ghaderi-Kangavari et al., 2022). In past746

work we have purposely not included some across-trial variability parameters because we have747

shown in simulations that the question of interest about the M/EEG-cognitive relationship748

can be answered without more complex models, knowing that the greater mathematical749

theory of decision-making does have variability and that the data would better be described750

by more complicated models. However if we were differentiating between models that are751

very similar in their predictions, we might want to include trial-to-trial variability parameters752

or more precise M/EEG correlates of evidence accumulation.753

5.3. Parameter recovery of simulated models754

Simulation is especially important for newer models and model fitting procedures that are755

not widely used. Because jointly fitting neural data and human behavior is not widely used756

within Cognitive Neuroscience and Psychology, the majority of model fitting procedures that757

readers may implement will fall into this category. Thus researchers interested in neurocogni-758

tive models should always simulate and refit new models to understand parameter recovery.759

The parameter estimates from new models and new model fitting procedures should always760

be verified by refitting data from simulations before modeling results can be trusted to be761

self-consistent, whether or not the model is reflective of reality or a specific hypothesis. For762

instance, model-fitting procedures could give realistic results, but fail to recover the same763

parameters when simulated. This means that the parameter estimates recovered from model-764

fitting will not reflect reality, even if the simplified model is completely true. In addition,765

some parameters of a model may recover, and therefore be relevant to analyze in real data,766

while other parameters of a model will not recover. In Figure 4 we show recovery of the 5767

of 6 parameters from Model 3 when using Markov Chain Monte Carlo (MCMC) sampling768

in JAGS (discussed below) with the jags-wiener plugin (Wabersich and Vandekerckhove,769

2013). We fit a model that assumes trial-to-trial variability in CPP slopes and not drift-rate770

(e.g., assuming η = 0). The code for this simulation, parameter recovery, and plot is avail-771

able at https://github.com/mdnunez/pyhddmjags/blob/master/simpleCPP_test.py as772

of March 2022, along with a shortened annotated version in the Appendix.773

5.4. Comparing models774

Model comparison is useful when multiple theories could describe the data and the eval-775

uation of hypotheses would depend on the theory assumed. Model comparison can also be776

used to evaluate competing theories directly. Therefore model comparison in joint cognitive777

modeling of M/EEG and human behavior is almost always beneficial. Model comparison can778

be based on multiple dimensions, but typically researchers are interested in the models that779

provide the most predictive and/or realistic accounts of the neural and behavior data. Model780

comparison could therefore be based on how well the model predicts data or how well models781

evaluate the hypothesis versus an alternative hypothesis. For example, if we were interested782

in the hypothesis that the CPP reflects evidence accumulation exactly, we could compare783

a model where the slope of the CPP describes the evidence accumulation rate itself, e.g.784
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Figure 4: The recovery of 5 parameters from Model 3. We simulated Model 3 using the provided Python
code with 100 simulated participants and 100 trials for each participant. The x-axis of each plot is the
true simulated parameter and the y-axis is a summary of posterior samples. The mean of the posterior
distributions are given by teal star symbols and the median of the posterior distributions are given by black
circles. Uncertainty about each parameter estimate is given by the 95% credible intervals of dark blue lines,
and 99% credible intervals of teal lines.



Model 3, to a more general model where the relationship between the CPP and evidence785

accumulation rate can be any value (see Exercises). If Model 3 describes the data nearly786

as well as the more generalized model, then we have evidence for the hypothesis that the787

CPP reflects evidence accumulation exactly.788

How well a model predicts data used to fit the model itself is often used as a measure of789

performance (Blohm et al., 2020). This is called in-sample prediction. However evaluating790

models based only on in-sample prediction can result in overfitting the data. Overfitting791

describes the situation in which additional in-sample prediction is gained through model792

complexity that is unrelated to the underlying true generative process, resulting in worse793

out-of-sample prediction. Out-of-sample prediction refers to how well a model predicts data794

that it was not fit to. We refer readers to a discussion about this topic by Aki Vehtari795

at https://avehtari.github.io/modelselection/CV-FAQ.html (Vehtari, 2023). Out-of-796

sample could also refer, although this is not traditionally in the definition, to how well it797

generalizes to similar data from other experiments (see Busemeyer and Wang, 2000). Note798

that prediction of in-sample and out-of-sample data can be used to compare models that799

differentiate specific hypotheses, but it is often not necessarily to perfectly describe or pre-800

dict EEG and/or behavioral data due to the presence of artifacts and noise in EEG and801

contaminate behavioral data not related to the cognition of interest.802

For evaluating neurocognitive models of M/EEG and human behavior, we prefer out-of-803

sample prediction (e.g. Nunez et al., 2017; Schubert et al., 2019). Out-of-sample prediction804

typically involves taking at least one subset of the data out before fitting the model to805

the remaining “in-sample” data. For instance, one could split a data set where 80% of806

the data is used to fit the model and 20% of the data is used to evaluate out-of-sample807

prediction. One method to evaluate the similarity of predicted data to the actual data is with808

a proportion of variance explained calculation. For instance, we have previously calculated809

R2
pred of participants’ accuracy and correct response time 25th percentiles, medians, and810

75th percentiles (Nunez et al., 2015, 2017). R2
pred is a measure of percentage variance in a811

statistic T (e.g. accuracy, correct-RT median, etc.) explained by in-sample or out-of-sample812

prediction. It is a function of the mean squared error of prediction (MSEP) and the sample813

variance of the statistic T based on a sample size J of data observations. R2
pred is defined as:814

R2
pred = 1−

∑J
j=1(Tj − T(pred)j)2/(J − 1)∑J

j=1(Tj − T̄ )2/(J − 1)
= 1− MSEPT

V̂ar[T ]
(11)

As one example, we could compare the out-of-sample prediction of Model 2A to Model815

2B that was fit to 80% of the data from Experiment 1. The observations for each statistic816

T in the R2
pred equation would be for every participant j with sample size J being the number817

of participants.818

There are other methods to evaluate out-of-sample prediction, such as calculating the log-819

likelihood under predicted data (e.g. see Figure 9 of Turner et al., 2016). Models’ prediction820

ability can also be evaluated with plots such as quantile-quantile (Q-Q) plots of measured821

versus predicted data quantiles. Because we typically use Bayesian methods, we generate822

posterior predictive distributions for in-sample and out-of-sample data. We can then create823

posterior predictive coverage plots (e.g. see Supplementary Materials of Nunez et al., 2017)824

or Q-Q plots. Plotting often provides additional information to more quantifiable measures825

25

https://avehtari.github.io/modelselection/CV-FAQ.html


such as R2
pred or a similar measure.826

Cross-validation refers to methods where out-of-sample prediction is performed repeti-827

tively on different subsets of data (e.g. a new 20% of the same data set iteratively). Because828

cross-validation lowers the impact of outliers in the out-sample, cross validation can be useful829

for modeling M/EEG data because the presence of outliers is commonplace. However care830

must be taken to avoid changing parameters of the model or model fitting procedure based831

on the results of cross validation because this would make the cross validation process less832

reflective of the true predictive ability of the model.833

If out-of-sample prediction is not available, then often penalizing by model complexity834

after in-sample prediction is used. This is often why Information Criteria measures are835

used (e.g. Ghaderi-Kangavari et al., 2023a, 2022). Essentially these measures are in-sample836

prediction measures that penalize for model complexity. Akaike Information Criterion (AIC),837

Bayesian Information Criteria (BIC), Deviance Information Criteria (DIC), and re-weighted838

variations of these measures are often used. However these measures may yield different839

results. For instance, it is thought that BIC more often favors models that match the ground840

truth while AIC more often favors models that are predictive of new data (Aho et al., 2014;841

Chandrasekaran and Hawkins, 2019) Therefore, it is important to pick one ahead of time842

and stick to it, or preregister the modeling analysis (Lee et al., 2019; Vandekerckhove et al.,843

2019).844

Simulation is also important if you wish to perform model comparison. Some models may845

fit data better not because the underlying theory is a better reflection of reality, but because846

the models capture some contaminant process better. That is, neither model is correct but847

the worse-fitting model is a better description of reality. Simulations of multiple models with848

contaminant processes before performing parameter recovery for each model can thus reveal849

which model and model-fitting procedure best recover true parameters. Simulation is also850

important for comparing models that predict both EEG and behavioral data, such as Model851

3, to other such models or models that only predict one data type. It is not immediately852

clear whether M/EEG or behavior should be favored when evaluating in-sample and out-853

of-sample prediction to compare models, and predictions of this data could change with854

each new model. Therefore simulations should be performed to make sure the parameters855

of interest are recovered when comparing models, as well as understand how model changes856

affect predictions of multiple data types. For an example of joint modeling for EEG and857

behavior, see work by Ghaderi-Kangavari et al. (2023b).858

We separate here confirmatory research from exploratory research. When discovering859

the influence of EEG measures on parameters that describe decision-making behavior, it is860

beneficial to explore various model types that may better match the theoretical evidence861

accumulation process. This can be achieved, for instance, either by fitting parameters from862

different sequential sampling models (SSMs) directly (preferred) or simulating a variety of863

SSMs and then exploring how similar parameters can be recovered in other models. Confir-864

matory research, on the other hand, necessitates large samples, pre-deciding an analysis plan865

that includes the specific joint model to test (and perhaps preregistration of that analysis866

plan and model), and requiring strict standards for hypothesis acceptance, such as in clinical867

trials (Lee et al., 2019). However, it’s worth nothing that there exists a spectrum between868

exploratory and confirmatory research that has been discussed elsewhere (e.g. Devezer et al.,869

2021).870
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5.5. Fitting complex models using Bayesian methods871

We generally prefer to use programs that use Bayesian Markov Chain Monte Carlo872

(MCMC) sampling and allow a large amount of flexibility to change the model structure.873

Probabilistic Programming Languages such as JAGS (Plummer, 2003), Stan (Carpenter874

et al., 2017), and PyMC3/4 (Salvatier et al., 2016) all make this process incredibly easy by875

allowing you to write your own complex models, but without needing to write your own sam-876

plers. Popular wrapper programs have also been created around these programs that make877

fitting certain models even easier (Wiecki et al., 2013; Bürkner, 2017), and there are other878

easy-to-use programs that implement their own samplers (Heathcote et al., 2019; Stevenson879

et al., 2023). Note that Bayesian analysis can be quite easy to learn for those that have a880

background in some mathematics and statistics. A nice introduction to Bayesian analysis is881

given by Etz and Vandekerckhove (2018). See also books by McElreath (2020) and Gelman882

et al. (2014).883

All the aforementioned programs also allow the modeler to easily implement hierarchical884

parameters which can better account for variance across experimental conditions, partici-885

pants, sessions, etc. Hierarchical parameters can often better account for data with multiple886

modes of data (Lee, 2011; Turner et al., 2016), such as EEG and human choice response887

times. Hierarchical models often yield better estimates of parameters due to “shrinkage”888

towards the mean parameters rather than fitting a model per participant or experimental889

condition, which could lead to overfitting and misestimation (see Chapter 5 of Gelman et al.,890

2014). Examples for fitting behavioural DDMs and neurocognitive DDMs using Python,891

JAGS, and Stan, with the models themselves written in JAGS and Stan code, are given892

in the repository https://github.com/mdnunez/pyhddmjags. We encourage readers to893

run the example models in this repository if they are interested in using JAGS and Stan894

with Python. Note that connectors to JAGS and Stan also exist in R (for examples, see895

https://github.com/kiante-fernandez/Rhddmjags) and other programming languages.896

The programmatic implementation to generate parameter estimates from joint models897

that we preferred in the past is JAGS (Plummer, 2003). JAGS is now a somewhat older898

program, but nicely contains multiple MCMC samplers and chooses among them based on899

the user-defined model. Custom distributions can also be added to JAGS (Wabersich and900

Vandekerckhove, 2014; Villarreal et al., 2023). JAGS uses Bayesian MCMC samplers to fit901

models to data and can easily fit joint models to multiple data types. For instance, we902

fit a simplified version of Model 3 in JAGS with 12,000 original samples in each of six903

chains for each parameter (see https://github.com/mdnunez/pyhddmjags/blob/master/904

simpleCPP_test.py). After removing the first 2, 000 samples as a “warm-up” or “burn-in”905

and then keeping only every 10th sample, i.e. using a “thinning” parameter of 10, this results906

in 1, 000 posterior samples in each chain for 1,000 ∗ 6 = 6,000 samples from the estimated907

posterior distributions for each parameter.908

To assess whether the model is reaching a unique solution (i.e. unique joint posterior dis-909

tributions), we can both inspect our MCMC chains but also gauge certain model convergence910

diagnostics (Gelman et al., 2014). The Gelman-Rubin statistic and the number of effective911

samples are calculated (Gelman et al., 2014). The Gelman-Rubin statistic assesses the con-912

vergence of MCMC samplers by comparing the between-chain variance to the within-chain913

variance of each parameter, with Gelman-Rubin statistics ≤ 1.1 thought to be a necessity914

for convergence. We also implemented the recommendation by Gelman et al. (2014) (see915
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footnote in the 3rd Edition on page 283) to split the chains in half before calculating the916

Gelman-Rubin statistic in order to account for non-stationary chains. The “effective number917

of samples” equation scales the total sample number for each parameter posterior by auto-918

correlation in the chains in order to estimate an independent number of samples. Larger919

effective samples for each parameter in the model are better. The chains for parameters920

with the largest Gelman-Rubin statistics and smallest effective number of samples are also921

visually inspected to ensure convergence. In publications we typically report the maximum922

Gelman-Rubin statistics across all parameters, and we have recently started to report the923

minimum number of effective samples across all parameters.924

5.6. Prior distributions in Bayesian models925

When using Bayesian methods we often must choose prior distributions of parameters,926

this is also true for estimating joint models of M/EEG and behavior with Bayesian methods.927

When possible, we pick prior distributions based on previous publications, and such that the928

prior distributions have weight over plausible values of the parameters. For instance, random929

draws from a normal distribution with a mean of .5 and a standard deviation of .25 will930

result in 68.2% of those draws within .25 and .75, and 95.4% of those draws within 0 and931

1. [0, 1] is the domain of the relative start point parameter β that encodes initial evidence932

bias in a DDM. Therefore a normal distribution with mean .5 and standard deviation of933

.25 truncated to the domain [0, 1] would be a good prior distribution for this parameter,934

disregarding algorithmic reasons why we might pick different priors (such as in true Gibbs935

sampling).936

There is ongoing research about what the best prior distributions are, depending upon937

the type of sampler. There are also many philosophical discussions about whether to use938

“informative” (generally narrow) or “weakly informative” (generally wide) priors. As mod-939

elers we should experiment with different priors in simulation to see how and if they change940

the results significantly. However we have not found that different “weakly informative”941

priors changed results much based on posterior distributions of hierarchical DDM param-942

eters. Prior distributions can change posterior distributions if those priors are very nar-943

row, such that values in that parameter’s domain are near impossible (“informative” pri-944

ors). For instance, a prior of β ∼ Normal(.5, .012) would restrict the posterior distribu-945

tion of β to be approximately in the domain [.46, .54], within 4 standard deviations on946

both sides of the mean. We refer readers to a discussion about this topic by Andrew947

Gelman at https://github.com/stan-dev/stan/wiki/Prior-Choice-Recommendations948

(Gelman, 2020)949

5.7. Assessing posterior distributions950

Posterior distributions provide evidence for parameters given the data and specific model951

architecture. They are influenced by prior distributions, but are often much more influenced952

by the data itself. In Bayesian analysis, probability is defined as uncertainty. Therefore, we953

can inspect the posterior distributions themselves to calculate the probability of observing954

certain values of a parameter given the specific model and data. For instance, the poste-955

rior distributions that result from fitting Model 2B to data from Experiment 2 would956

result in posterior distributions for all parameters, including both effect parameters ξ1j1 for957

experimental condition (1) and ξ1j2 for experimental condition (2). We could calculate the958
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probability that each effect parameter is greater than 0.5 (for instance) by finding the propor-959

tion of posterior samples that are above 0.5, thus approximating the area under the curves of960

the posterior distributions, and thus approximating the probability (e.g. evidence) that each961

effect parameter is greater than 0.5. We can also calculate posterior distributions to answer962

other questions using a transformation of our parameters. For instance, we can calculate963

the posterior distribution of the difference between these two effects by matching MCMC964

samples of the original model fit to get one difference posterior of the quantity ξ1j1− ξ1j2 for965

participant j. We can then calculate the probability that ξ1j1 > ξ1j2 by finding the proportion966

of posterior samples of the new quantity ξ1j1 − ξ1j2 that are above zero.967

Bayes Factors (BFs) usually provide the degree of evidence (defined as a probability968

ratio in Bayesian statistics) for the data given a model. Here we will focus on calculating969

BFs for a specific case where the parameter value λ is exactly equal to some value x (λ = x),970

compared to the same model where the parameter λ can take any other realistic value (λ 6= x)971

(Jeffreys, 1961; Kass and Raftery, 1995; Rouder and Morey, 2012; van Ravenzwaaij and Etz,972

2021). BFs can also be inverted to give evidence for the the more general case (λ 6= x)973

compared to the more specific case (λ = x). Generally Bayes Factors over 3 are considered974

positive evidence for the numerator model over the denominator model (e.g. the effect is975

3 times more likely under the specific case than the general model) while over 20 is strong976

evidence (Kass and Raftery, 1995). Bayes Factors for parameters of joint models estimated977

with Bayesian methods can often be estimated using the Savage-Dickey density ratio of the978

posterior density of parameter λ at test value x over the prior density of parameter λ at test979

value x (Dickey and Lientz, 1970; Verdinelli and Wasserman, 1995; Wagenmakers et al., 2010;980

van Ravenzwaaij and Etz, 2021). One example of Savage-Dickey density ratio calculation981

for Hypothetical Experiment 2 is given at the bottom of https://github.com/mdnunez/982

pyhddmjags/blob/master/model2b_experiment2.py. We have also previously estimated983

specific Bayes Factors (BF1s) of linear relationships between non-decision time τ parameters984

and N200 ERP latencies that describe the amount of relative evidence of the effect parameter985

λ being equal to 1 (λ = 1) to a more general comparison model (λ 6= 1) using the Savage-986

Dickey density ratio (Nunez et al., 2019a). These BF1s compared the hypothesis of a “spike”987

distribution at 1 with no uncertainty in possible effect values (λ = 1) versus a model with988

less specific effect values (λ 6= 1). Note that Bayes Factors can describe comparisons of989

models generally (Etz and Vandekerckhove, 2018; van Doorn et al., 2021). However for joint990

modeling purposes we are often interested in comparing point hypotheses to general cases.991

Other BFs to compare complex models are currently difficult to calculate, and therefore we992

recommend model comparisons using the methods previously mentioned (e.g. R2
pred) for cases993

other than comparing point hypotheses to general models. Integration of existing work into994

new packages and further development of these methods will likely make calculating BFs for995

comparing different models easier in the future (e.g. Gronau et al., 2017, 2020)996

6. Discussion997

6.1. Modeling of M/EEG generators998

Note that in this paper we assumed summary measures of M/EEG. We could instead999

model and simulate M/EEG time-series, waveforms, or frequency bands for multiple elec-1000

trodes/sensors. Considerable work has been conducted to understand the neural generators1001
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of M/EEG (e.g. David and Friston, 2003; Nunez and Srinivasan, 2006; Srinivasan et al., 2013),1002

especially in the field of Computational Neuroscience. To this end, many researchers in the1003

field of Computational Neuroscience have built models of M/EEG, scaled up from single-1004

unit neuron activity, the activity of populations of neurons, and the connectivity between1005

neural populations (Daunizeau et al., 2011; Glomb et al., 2021). Developing and simulating1006

these models have been helpful in generating theory to understand how the brain generates1007

M/EEG, and there has been some success relating model parameters to human behavior.1008

However finding parameter estimates of these models often suffers from the inverse prob-1009

lem, known in statistical modeling as unidentifiability (Walter, 1987). The inverse problem1010

is relevant across all scientific fields that involve modeling. Inverse problems / unidentifia-1011

bilities arise when there is more than one unique parameter set that can describe the data1012

when the generator model is known (Bamber and van Santen, 2000). Therefore, we can-1013

not invert, or find unique parameter estimates, for a model even though the model can be1014

simulated and we have a good idea of the theoretical concepts. In the context of M/EEG1015

computational modeling, the inverse problem stems from the fact that M/EEG sources are1016

not typically confined to a two-dimensional representation of the brain. Instead, they are1017

represented in a three-dimensional manner, while the scalp electrodes (EEG), MEG sensors,1018

or intracranial electrodes (iEEG) exist on curved two-dimensional surfaces. Specifically, these1019

two-dimensional surfaces usually correspond to the scalp, MEG helmet, or electrode strips1020

respectively. Determining these sources at specific locations in the brain requires making1021

additional assumptions about the M/EEG generators (e.g. prior information in Bayesian1022

models, see Cai et al., 2018). Unfortunately, these assumptions have proven difficult to val-1023

idate experimentally due to the invasiveness of surgical procedures, the nature of electrical1024

volume conduction in the head, and the complexity of the brain. Consequently, many studies1025

that explore solutions to the inverse problem for M/EEG rely on comparisons to across algo-1026

rithms. However, this may change with the advent of new MEG technology (Ilmoniemi and1027

Sarvas, 2019). As a result, some researchers opt to rely on finding only representative sources1028

in M/EEG (Nunez et al., 2019b), including in our own work (e.g. Nunez et al., 2019a).1029

M/EEG records are an extremely rich data source. We usually assume many M/EEG1030

sources in the brain, e.g. dipole sheet, that generate time series data of multiple electrodes,1031

usually 16-256 electrodes in scalp EEG, approximately 300 sensors in MEG, and often > 501032

electrodes in intracranial EEG, that are typically sampled at least at 250 Hz. This results in1033

rich multivariate time series data with some spatial information. There are specific M/EEG1034

waveforms, power bands, network interactions, etc. that exist within the data. But there is no1035

reason to suspect that all useful measures within M/EEG have been studied, and we should1036

expect that there are measures of M/EEG that can predict behavior and cognition that have1037

yet to be found. Even with the advent of machine learning techniques which can explore rich1038

data sets, we expect neurocognitive modeling to reveal more about M/EEG data in the future.1039

Within M/EEG multivariate time series, there are also artifactual components, discussed1040

previously, embedded in both scalp EEG, MEG, and intracranial EEG, but especially scalp1041

EEG and older MEG systems. Thus, including all relevant information for modeling full1042

time-series of M/EEG in a theoretical model can be difficult.1043

However we do not need to find source estimates of M/EEG to better understand the neu-1044

rocognitive theory. We could, for instance, translate specific EEG potentials into cognition,1045

EEG potentials like the CPP slope, which in Model 3 is hypothesized to be generated from1046
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mean evidence accumulation rate during a trial. We could also instead build models that1047

describe the M/EEG phenomena, such as specific waveforms, while not assuming any partic-1048

ular type of cognition or brain activity. That is, we could describe the observed phenomena1049

and not develop a neurocognitive understanding of M/EEG. This may aid us by allowing1050

measurement noise in observed M/EEG potentials in our models, for instance. One promis-1051

ing method is to simulate EEG time courses by simulating from Morlet wavelet transforms1052

(Bridwell et al., 2018). Specific noise in M/EEG could also be simulated to understand the1053

robustness of the modeling procedure. If specific signals from M/EEG are extracted for joint1054

modeling, such as ERPs or power from a certain frequency band, capturing a full possible1055

range of these signals and contaminants in simulation is beneficial to test the robustness of1056

the procedure (Hawkins et al., 2017).1057

6.2. The future of joint modeling1058

We do not consider much of our past work (e.g. Nunez et al., 2015, 2017, 2019a) of1059

modeling EEG and human behavior to be “true” joint modeling , in that the our models1060

did not also describe EEG measures. We used hierarchical Bayesian methods, but only1061

assumed simple linear influences of EEG measures on cognitive parameters, similar to Model1062

2 presented above. These methods could be considered simple Directed approaches described1063

by Palestro et al. (2018). Ultimately, as Cognitive Neuroscientists and Cognitive Modelers,1064

we would like to develop computational theory that predicts both observed human behavior1065

and EEG dynamics, such as in Model 3. Among the several approaches described by Turner1066

et al. (2017); Palestro et al. (2018), researchers should ultimately seek to use an Integrative1067

approach with simultaneous modeling of EEG and behavior to test neurocognitive theory.1068

In this way of thinking about model-based cognitive neuroscience, what we have typically1069

performed is simultaneous joint modeling with linear connectors between EEG measures1070

and decision-making behavior (a simple Directed approach in the classes of joint models1071

by Palestro et al. (2018)), but not using an Integrative approach. Furthermore researchers,1072

including ourselves, conducting joint modeling studies have typically fit simultaneous joint1073

models with linear connectors between EEG measures and cognitive parameters (e.g. Frank1074

et al., 2015; Nunez et al., 2017; van Ravenzwaaij et al., 2017; Schubert et al., 2019). Future1075

research should improve upon previous joint modeling work. In the future we wish to use the1076

richness of EEG data and more informative human behavioral measures (e.g. eye-tracking)1077

within joint modeling frameworks to answer important neurocognitive questions. This work1078

will also lead to better integrative joint models with possible non-linear connections.1079

Recently developed model fitting procedures are making fitting joint models easier. We1080

are particularly excited about algorithms that allow sampling from posteriors of joint models1081

when a likelihood is not available in closed-form or difficult to derive and estimate. One1082

particular promising program is BayesFlow, which finds posterior samples from simulation-1083

based models using invertible neural networks (Radev et al., 2020; Schmitt et al., 2022).1084

The first author with colleagues has already used this program with success for Integrative1085

joint modeling of single-trial EEG and behavior during decision making (Ghaderi-Kangavari1086

et al., 2023b). A similar promising and accessible method is to use neural networks to learn1087

approximate likelihoods that can then be used to find posterior distributions of joint models1088

(Fengler et al., 2021, 2022). In general we expect future model fitting procedures to be more1089
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flexible in the types of models that can be fit to data, making joint modeling of M/EEG and1090

behavioral data easier to implement.1091

We expect that joint modeling will gain popularity in various cognitive domains beyond1092

evidence accumulation. This includes the extension of cognitive models of working memory1093

(e.g. Oberauer and Lin, 2017; Oberauer and Lewandowsky, 2019b) and visual metacognition1094

(e.g. Rahnev, 2021). Domain-specific knowledge will be necessary to extend existing cognitive1095

models into neurocognitive models. We aim for this tutorial to serve as a helpful foundation1096

in these advancements.1097

6.3. Conclusion1098

We hope this tutorial serves as a guide for those researchers and students interested in1099

joint modeling of M/EEG and behavior. We have covered the possible motivations to per-1100

form joint modeling, the definition of joint models, building of joint models, simulating joint1101

models, experimental design, artifactual processes in M/EEG data, specific M/EEG signals,1102

model fitting implementations, parameter recovery, model comparison, and the future of1103

joint modeling. We have focused our examples on the relationship of scalp-recorded EEG1104

and decision-making. In particular we have used a guiding example of testing the hypoth-1105

esized relationship of the Centro-Parietal Positivity (CPP) slope to evidence accumulation1106

rate. However these techniques and principles can easily be applied to other neurocognitive1107

domains and questions using both animal and human electrophysiology. We expect joint1108

modeling to be able to answer questions that cannot be answered with other methods be-1109

cause joint modeling allows direct testing of neurocognitive theory. And we look forward to1110

reading about future research using joint modeling of M/EEG and behavior.1111

7. Exercises1112

1. Test your EEG artifact identification skills by classifying EEG artifact using Indepen-1113

dent Component Analysis. As of August 2023, the website from the makers of ICLabel1114

(Pion-Tonachini et al., 2019) allowed you to practice labeling independent components1115

as “Brain”, “Muscle”, “Eye”, “Heart”, “Line Noise”, “Chan Noise”, or “Other”. Prac-1116

tice at the link https://labeling.ucsd.edu/tutorial/practice and give feedback1117

to improve the ICLabel algorithm at https://labeling.ucsd.edu/labelfeedback.1118

2. Run the Python or R code from Model 3, rewrite the code in another language (e.g.1119

Julia, see https://github.com/JagsJulia/Jags.jl), and/or rewrite the model code1120

in another Probabilistic Programming Language other than JAGS (e.g. Stan) and then1121

run the code. Plot histograms or density approximations of the response time, accuracy,1122

and CPP slope data for some participants.1123

3. What model could be compared to Model 3 in order to test the hypothesis that the1124

CPP slope on each trial is a reflection of evidence accumulation? Specifically, what1125

model along with Model 3 could be fit to CPP slopes, response times, and accuracies1126

to test this hypothesis?1127

4. How could we change Model 3 to test the hypothesis that the CPP slope reflects a scaled1128

version of evidence accumulation rate, that is the mean rate of evidence accumulation1129

δ is not in micro-volts µV ? Assume that the CPP slope could be scaled differently in1130

each participant due to scalp volume conduction differences across participants.1131
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5. Using the given Python simulation of Model 3 as a guide, simulate from Model 1 while1132

assuming that the CPP slopes come from a distribution of Normal(3, 12) µV (micro-1133

volts) per second across trials, that θ0 is equal to .25 seconds, θ1 is equal to .1, σ is1134

equal to .1, γ0 is equal to 0, and γ1 is equal to .3. Does this model produce similar1135

(and in this case of Model 3, more realistic) values of response times r and accuracies1136

x across trials n compared to Model 3?1137

Solutions are located after the Appendix of this document.1138

8. Further readings1139

Here we present a reading list containing articles and books that offer discussions on a1140

range of relevant subjects within neurocognitive modeling. The reading list follows the same1141

section headers as outlined in the main text.1142

1. Motivation to model1143

– Blohm, G., Kording, K. P., and Schrater, P. R. (2020). A How-to-Model Guide for1144

Neuroscience. eNeuro, 7(1)1145

– Forstmann, B. U. and Wagenmakers, E.-J., editors (2015). An Introduction to Model-1146

Based Cognitive Neuroscience. Springer New York, New York, NY1147

– Wang, Z. J. and Busemeyer, J. R. (2021). Cognitive Choice Modeling. Cognitive Choice1148

Modeling. The MIT Press, Cambridge, MA, US1149

2. Models to describe joint data1150

– Harris, A. and Hutcherson, C. A. (2022). Temporal dynamics of decision making:1151

A synthesis of computational and neurophysiological approaches. WIREs Cognitive1152

Science, 13(3):e15861153

– Palestro, J. J., Bahg, G., Sederberg, P. B., Lu, Z.-L., Steyvers, M., and Turner, B. M.1154

(2018). A tutorial on joint models of neural and behavioral measures of cognition.1155

Journal of Mathematical Psychology, 84:20–481156

– Turner, B. M., Forstmann, B. U., and Steyvers, M. (2019). Joint Models of Neural and1157

Behavioral Data. Computational Approaches to Cognition and Perception. Springer1158

International Publishing1159

3. Experimental manipulations and experimental design1160

– Jensen, K. M. and MacDonald, J. A. (2023). Towards thoughtful planning of ERP1161

studies: How participants, trials, and effect magnitude interact to influence statistical1162

power across seven ERP components. Psychophysiology, 60(7):e142451163
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4. Collection and preprocessing of M/EEG for joint modeling1164

– Boudewyn, M. A., Erickson, M. A., Winsler, K., Ragland, J. D., Yonelinas, A., Frank,1165

M., Silverstein, S. M., Gold, J., MacDonald III, A. W., and Carter, C. S. (2023).1166

Managing EEG studies: How to prepare and what to do once data collection has begun.1167

Psychophysiology, page e143651168

– Cohen, M. X. (2014). Analyzing Neural Time Series Data: Theory and Practice. MIT1169

Press1170

– Luck, S. J. (2014). An Introduction to the Event-Related Potential Technique, Second1171

Edition. MIT Press1172

– Luck, S. J. (2022). Applied Event-Related Potential Data Analysis. LibreTexts1173

– Nunez, M. D., Nunez, P. L., and Srinivasan, R. (2016). Electroencephalography (EEG):1174

neurophysics, experimental methods, and signal processing. In Ombao, H., Linquist,1175

M., Thompson, W., and Aston, J., editors, Handbook of Neuroimaging Data Analysis,1176

pages 175–197. Chapman & Hall/CRC1177

5. Implementing model fitting procedures and estimating parameters1178

– Baribault, B. and Collins, A. G. E. (2023). Troubleshooting Bayesian cognitive models.1179

Psychological Methods1180

– Etz, A. and Vandekerckhove, J. (2018). Introduction to Bayesian Inference for Psy-1181

chology. Psychonomic Bulletin & Review, 25(1):5–341182

– Farrell, S. and Lewandowsky, S. (2018). Computational Modeling of Cognition and1183

Behavior. Cambridge University Press, Cambridge1184

– Lee, M. D. and Wagenmakers, E.-J. (2014). Bayesian cognitive modeling: A practical1185

course. Cambridge university press1186

– Myung, J. I. and Pitt, M. A. (2018). Model comparison in psychology. Stevens’ handbook1187

of experimental psychology and cognitive neuroscience, 5:85–1181188

– McElreath, R. (2018). Statistical Rethinking: A Bayesian Course with Examples in R1189

and Stan. CRC Press1190

– Palestro, J. J., Bahg, G., Sederberg, P. B., Lu, Z.-L., Steyvers, M., and Turner, B. M.1191

(2018). A tutorial on joint models of neural and behavioral measures of cognition.1192

Journal of Mathematical Psychology, 84:20–481193

– Schad, D. J., Betancourt, M., and Vasishth, S. (2021). Toward a principled Bayesian1194

workflow in cognitive science. Psychological Methods, 26(1):103–1261195

– Wilson, R. C. and Collins, A. G. (2019). Ten simple rules for the computational mod-1196

eling of behavioral data. eLife, 8:e495471197
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6. Discussion1198

– Bridwell, D. A., Cavanagh, J. F., Collins, A. G. E., Nunez, M. D., Srinivasan, R., Stober,1199

S., and Calhoun, V. D. (2018). Moving Beyond ERP Components: A Selective Review1200

of Approaches to Integrate EEG and Behavior. Frontiers in Human Neuroscience,1201

12:1061202
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Carvalho, S. (2022). Modulation of the cognitive event-related potential P3 by transcra-1487

nial direct current stimulation: Systematic review and meta-analysis. Neuroscience &1488

Biobehavioral Reviews, 132:894–907.1489

Mognon, A., Jovicich, J., Bruzzone, L., and Buiatti, M. (2011). ADJUST: An automatic EEG1490

artifact detector based on the joint use of spatial and temporal features. Psychophysiology,1491

48(2):229–240.1492

Muthukumaraswamy, S. (2013). High-frequency brain activity and muscle artifacts in1493

MEG/EEG: A review and recommendations. Frontiers in Human Neuroscience, 7.1494

Myung, J. I. and Pitt, M. A. (2018). Model comparison in psychology. Stevens’ handbook of1495

experimental psychology and cognitive neuroscience, 5:85–118.1496

Næss, S., Halnes, G., Hagen, E., Hagler, D. J., Dale, A. M., Einevoll, G. T., and Ness, T. V.1497

(2021). Biophysically detailed forward modeling of the neural origin of EEG and MEG1498

signals. NeuroImage, 225:117467.1499

Navarro, D. J. (2019). Between the Devil and the Deep Blue Sea: Tensions Between Scientific1500

Judgement and Statistical Model Selection. Computational Brain & Behavior, 2(1):28–34.1501

Newsome, W. T. and Pare, E. B. (1988). A selective impairment of motion perception follow-1502

ing lesions of the middle temporal visual area (MT). Journal of Neuroscience, 8(6):2201–1503

2211.1504

Nunez, M. D., Charupanit, K., Sen-Gupta, I., Lopour, B. A., and Lin, J. J. (2022). Beyond1505

rates: time-varying dynamics of high frequency oscillations as a biomarker of the seizure1506

onset zone. Journal of Neural Engineering, 19(1):016034.1507

Nunez, M. D., Gosai, A., Vandekerckhove, J., and Srinivasan, R. (2019a). The latency of a1508

visual evoked potential tracks the onset of decision making. NeuroImage, 197:93–108.1509

Nunez, M. D., Nunez, P. L., and Srinivasan, R. (2016). Electroencephalography (EEG):1510

neurophysics, experimental methods, and signal processing. In Ombao, H., Linquist, M.,1511

Thompson, W., and Aston, J., editors, Handbook of Neuroimaging Data Analysis, pages1512

175–197. Chapman & Hall/CRC.1513

Nunez, M. D., Srinivasan, R., and Vandekerckhove, J. (2015). Individual differences in1514

attention influence perceptual decision making. Frontiers in Psychology, 8.1515

Nunez, M. D., Vandekerckhove, J., and Srinivasan, R. (2017). How attention influences per-1516

ceptual decision making: Single-trial EEG correlates of drift-diffusion model parameters.1517

Journal of Mathematical Psychology, 76:117–130.1518

43



Nunez, P. L., Nunez, M. D., and Srinivasan, R. (2019b). Multi-Scale Neural Sources of1519

EEG: Genuine, Equivalent, and Representative. A Tutorial Review. Brain Topography,1520

32(2):193–214.1521

Nunez, P. L. and Srinivasan, R. (2006). Electric fields of the brain: the neurophysics of EEG.1522

Oxford University Press, Oxford ; New York, 2nd ed edition.1523

Nunez, P. L., Wingeier, B. M., and Silberstein, R. B. (2001). Spatial-temporal structures1524

of human alpha rhythms: Theory, microcurrent sources, multiscale measurements, and1525

global binding of local networks. Human Brain Mapping, 13(3):125–164.1526

Oberauer, K. and Lewandowsky, S. (2019a). Addressing the theory crisis in psychology.1527

Psychonomic bulletin & review, 26:1596–1618.1528

Oberauer, K. and Lewandowsky, S. (2019b). Simple measurement models for complex1529

working-memory tasks. Psychological Review, 126(6):880.1530

Oberauer, K. and Lin, H.-Y. (2017). An interference model of visual working memory.1531

Psychological review, 124(1):21.1532

O’Connell, R. G., Dockree, P. M., and Kelly, S. P. (2012). A supramodal accumulation-1533

to-bound signal that determines perceptual decisions in humans. Nature Neuroscience,1534

15(12):1729–1735.1535

Oostenveld, R., Fries, P., Maris, E., and Schoffelen, J.-M. (2011). FieldTrip: open source1536

software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Com-1537

putational intelligence and neuroscience, 2011:1–9.1538

Ostwald, D., Porcaro, C., Mayhew, S. D., and Bagshaw, A. P. (2012). EEG-fMRI Based1539

Information Theoretic Characterization of the Human Perceptual Decision System. PLOS1540

ONE, 7(4):e33896.1541

O’Connell, R. G., Shadlen, M. N., Wong-Lin, K., and Kelly, S. P. (2018). Bridging Neural1542

and Computational Viewpoints on Perceptual Decision-Making. Trends in Neurosciences,1543

41(11):838–852.1544

Palestro, J. J., Bahg, G., Sederberg, P. B., Lu, Z.-L., Steyvers, M., and Turner, B. M.1545

(2018). A tutorial on joint models of neural and behavioral measures of cognition. Journal1546

of Mathematical Psychology, 84:20–48.1547

Parra, L. C., Spence, C. D., Gerson, A. D., and Sajda, P. (2005). Recipes for the linear1548

analysis of EEG. NeuroImage, 28(2):326–341.1549

Pfurtscheller, G., Stancák, A., and Neuper, C. (1996). Event-related synchronization (ERS)1550

in the alpha band — an electrophysiological correlate of cortical idling: A review. Inter-1551

national Journal of Psychophysiology, 24(1):39–46.1552

Philiastides, M. G., Heekeren, H. R., and Sajda, P. (2014). Human Scalp Potentials Reflect a1553

Mixture of Decision-Related Signals during Perceptual Choices. Journal of Neuroscience,1554

34(50):16877–16889.1555

44



Philiastides, M. G., Ratcliff, R., and Sajda, P. (2006). Neural Representation of Task Diffi-1556

culty and Decision Making during Perceptual Categorization: A Timing Diagram. Journal1557

of Neuroscience, 26(35):8965–8975.1558

Pion-Tonachini, L., Kreutz-Delgado, K., and Makeig, S. (2019). ICLabel: An automated elec-1559

troencephalographic independent component classifier, dataset, and website. NeuroImage,1560

198:181–197.1561

Plummer, M. (2003). JAGS: A program for analysis of Bayesian graphical models using1562

Gibbs sampling. In Proceedings of the 3rd International Workshop on Distributed Statistical1563

Computing (DSC 2003), Vienna, Austria.1564
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9. Appendix1697

9.1. An illustrative implementation of neurocognitive modeling1698

The following code is a slightly modified and annotated version of Python code at this loca-1699

tion: https://github.com/mdnunez/pyhddmjags/blob/master/simpleCPP_test.py. For1700

this tutorial, we will walk through the process of simulating data from Model 3, writing the1701

corresponding JAGS code for the model, and fitting the model to our simulated data.1702

Simulating data1703

In Code Block 2 we first start by generating choice, response times, and CPP slopes1704

from Model 3 (for a brief description, see below, or for more in-depth information, refer to1705

the main text). Lines 3-11, first import the necessary modules, as well as a custom module1706

named pyhddmjagsutils. Lines 19-25, we specify the number of participants (nparts = 100)1707

and trials (ntrials = 100) we would like to simulate. The total number of trials is then1708

specified as N = ntrials * nparts. Lines 30-40 randomly initialize model parameters from1709

uniform distributions with specified bounds. Line 47-57 then loops through each participant,1710

simulating their choice and response times using the simulratcliff function from pyhddm-1711

jagsutils, and CPP slopes from a normal distribution. simulratcliff is exactly the code we1712

showed previously for simulating choice and response time data in Code Block 1 in the main1713

text.1714

The remainder of Code Block 2 initializes and stores all the generated data and parameters1715

in a dictionary called ‘genparam‘.1716

11717

2 # Load Modules1718

3 import numpy as np1719

4 import pyjags1720

5 import scipy.io as sio1721

6 import os1722

7 import matplotlib.pyplot as plt1723

8 import matplotlib.gridspec as gridspec1724

9 from matplotlib import rc1725

10 from scipy import stats1726

11 import pyhddmjagsutils as phju1727

121728

13 ### Simulations ###1729

141730

15 # Generate samples from the joint -model of reaction time and choice1731

16 # Note you could remove this if statement and replace with loading your1732

own data to dictionary "gendata"1733

171734

18 # Number of simulated participants1735

19 nparts = 1001736

201737

21 # Number of trials for one participant1738

22 ntrials = 1001739

231740

24 # Number of total trials in each simulation1741

25 N = ntrials * nparts1742

261743

27 # Set random seed1744

49

https://github.com/mdnunez/pyhddmjags/blob/master/simpleCPP_test.py


28 np.random.seed (2021)1745

29 # Uniform from .15 to .6 seconds1746

30 ndt = np.random.uniform (.15, .6, size=nparts)1747

31 # Uniform from .8 to 1.4 evidence units1748

32 alpha = np.random.uniform (.8, 1.4, size=nparts)1749

33 # Uniform from .3 to .7 * alpha1750

34 beta = np.random.uniform (.3, .7, size=nparts)1751

35 # Uniform from -4 to 4 evidence units per second1752

36 delta = np.random.uniform(-4, 4, size=nparts)1753

37 # Uniform from 0 to 2 evidence units per second1754

38 deltatrialsd = np.random.uniform(0, 2, size=nparts)1755

39 # Uniform from 0 to 1 evidence units per second1756

40 CPPnoise = np.random.uniform(0, 1, size=nparts)1757

41 y = np.zeros(N)1758

42 rt = np.zeros(N)1759

43 acc = np.zeros(N)1760

44 CPP = np.zeros(N)1761

45 participant = np.zeros(N) # Participant index1762

46 indextrack = np.arange(ntrials)1763

47 for p in range(nparts):1764

48 tempout = phju.simulratcliff(N=ntrials , Alpha=alpha[p], Tau=ndt[p],1765

Beta=beta[p],1766

49 Nu=delta[p], Eta=deltatrialsd[p])1767

50 tempx = np.sign(np.real(tempout))1768

51 tempt = np.abs(np.real(tempout))1769

52 CPP[indextrack] = np.random.normal(loc=delta[p],scale=CPPnoise[p],size1770

=ntrials)1771

53 y[indextrack] = tempx * tempt1772

54 rt[indextrack] = tempt1773

55 acc[indextrack] = (tempx + 1) / 21774

56 participant[indextrack] = p + 11775

57 indextrack += ntrials1776

581777

59 genparam = dict()1778

60 genparam[’ndt’] = ndt1779

61 genparam[’beta’] = beta1780

62 genparam[’alpha ’] = alpha1781

63 genparam[’delta ’] = delta1782

64 genparam[’deltatrialsd ’] = deltatrialsd1783

65 genparam[’CPPnoise ’] = CPPnoise1784

66 genparam[’CPP’] = CPP1785

67 genparam[’rt’] = rt1786

68 genparam[’acc’] = acc1787

69 genparam[’y’] = y1788

70 genparam[’participant ’] = participant1789

71 genparam[’nparts ’] = nparts1790

72 genparam[’ntrials ’] = ntrials1791

73 genparam[’N’] = N1792

Code Block 2: generating simulated data from Model 3

Specifying a joint model1793

In this section, we describe how to specify a joint model. Specifically, we discuss how1794

JAGS and Python handler code can be used to write models. In our example, the JAGS1795
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code is written as a string within Python and saved into a file to be called during sampling.1796

However, you can also specify your JAGS file separately. In the worked example we focus1797

on Model 3 as discussed the main text. We briefly restate it convenience here. Recall that1798

Model 3 tries to describe the cognitive parameters through the EEG measures themselves,1799

allowing us to test the underlying computational role of the CPP slope in cognition.1800

(rij, xij) ∼ DDM (δj, τj, αj, βj, ηj) (12)

cij ∼ Normal(δj, σ
2
j ) (13)

Let CPP slope be denoted by the variable c, accuracy be denoted by x, and response times1801

be denoted by r. Note that x, r, and c can vary on every trial i and by participant j. In terms1802

of parameters we are interested in the five cognitive parameters of a DDM, δ, τ , α, β, η and1803

one computational parameter σ that vary by participant j. In Model 3, the mean of each1804

trial’s CPP slope c is described by the drift rate for each participant j. Lastly, we assume,1805

for model fitting, that there is no extra trial-to-trial variability in drift-rate (e.g. assuming η1806

= 0), due to recovery work by Dutilh et al. (2019) and our own recovery work above showing1807

that assuming this parameter is not necessarily to estimate the other parameters.1808

The JAGS code consists of two sections: the first defines our priors on the model parame-1809

ters, and the second defines the likelihood function. Lines 9-24 loop through each participant,1810

specifying priors on each of the model parameters. Because we are fitting our model within1811

a Bayesian framework, we need to specify our priors. For simplicity, we will use the normal1812

distribution N , parameterized by mean and variance respectively, and the truncated normal1813

distribution with boundaries a and b denoted by ∈ (a, b).1814

αj ∼ N (1, .52) ∈ (0, 3) (14)

τj ∼ N (.5, .252) ∈ (0, 1) (15)

βj ∼ N (.5, .252) ∈ (0, 1) (16)

δj ∼ N (0, 22) (17)

σj ∼ N (1, .52) ∈ (0, 3) (18)

For a discussion on prior selection in cognitive modeling, see Lee and Vanpaemel (2018),1815

and for a discussion specific to DDMs, Matzke and Wagenmakers (2009); Tran et al. (2021).1816

One thing to note is that JAGS parameterizes the normal distributions in terms of precision1817

rather than standard deviation. Thus, throughout the model specification, we use the pow1818

function to convert our standard deviations into precision parameters.1819

Next, Lines 29-36 define our likelihood function. Following equations (1) and (2), the1820

likelihood function loops through each trial to generate samples from the joint posterior1821

distribution of the model parameters, conditioned on the simulated data. This can be written1822

more formally as:1823

p(δ, τ, α, β, σ|y, c) ∝ L(δ, τ, α, β|y)L(δ, σ|c)p(δ, τ, α, β, σ) (19)
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This predicted joint distribution of the data, conditional on all parameters, is then the first1824

passage time distribution of a Wiener process with constant drift (η = 0) and a normal1825

distribution to describe the mean CPP slopes. Note that for each trial i, subject j, the1826

observed accuracy xij and response time rij are combined into a two-element vector yij.1827

11828

2 #write JAGS code1829

3 tojags = ’’’1830

4 model {1831

51832

6 ##########1833

7 #Simple NDDM parameter priors1834

8 ##########1835

9 for (p in 1: nparts) {1836

101837

11 #Boundary parameter (speed -accuracy tradeoff) per participant1838

12 alpha[p] ~ dnorm(1, pow(.5,-2))T(0, 3)1839

131840

14 #Non -decision time per participant1841

15 ndt[p] ~ dnorm(.5, pow(.25,-2))T(0, 1)1842

161843

17 #Start point bias towards choice A per participant1844

18 beta[p] ~ dnorm (.5, pow(.25,-2))T(0, 1)1845

191846

20 #Drift rate to choice A per participant1847

21 delta[p] ~ dnorm(0, pow(2, -2))1848

221849

23 #Noise in observed EEG measure , the CentroParietal Positivity (CPP1850

) slope per participant1851

24 CPPnoise[p] ~ dnorm(1, pow(.5,-2))T(0, 3)1852

251853

26 }1854

271855

28 ##########1856

29 # Wiener likelihood1857

30 for (i in 1:N) {1858

311859

32 # Observations of accuracy*RT for DDM process of rightward/1860

leftward RT1861

33 y[i] ~ dwiener(alpha[participant[i]], ndt[participant[i]], beta[1862

participant[i]], delta[participant[i]])1863

341864

35 # Observations of CentroParietal Positivity (CPP) slope per trial1865

36 CPP[i] ~ dnorm(delta[participant[i]],pow(CPPnoise[participant[i1866

]],-2))1867

371868

38 }1869

39 }1870

40 ’’’1871

411872

42 modelfile = ’jagscode/simpleCPP_test1.jags’1873

43 f = open(modelfile , ’w’)1874

44 f.write(tojags)1875
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45 f.close ()1876

Code Block 3: writing Model 3 in JAGS

Note that this model could be easily extended to a hierarchical model with changed pri-1877

ors and hyperpriors. We hierarchical model examples in the Python https://github.com/1878

mdnunez/pyhddmjags and R https://github.com/kiante-fernandez/Rhddmjags reposi-1879

tories, see also Further readings of Implementing model fitting procedures and estimating pa-1880

rameters, especially by Lee and Wagenmakers (2014) for a discussion on hierarchical models1881

with examples in JAGS.1882

Fitting a joint model to data1883

Once we have specified our joint model, we can fit it to the data. Specifically, we discuss1884

how the Python handler code can be used to fit models to our simulated data. At this point,1885

we will assume that you have installed the JAGS software and the necessary extension for1886

sampling from the Wiener distribution in JAGS (for details, see Wabersich and Vandekerck-1887

hove (2014)). The goal of the following code is to sample from the joint posterior distribution1888

specified in the Code Block and in equation 19 above.1889

We start by setting the seed in Line 3. Setting the seed in statistical simulations ensures1890

that the sequence of random numbers generated is reproducible across different runs and1891

machines. Lines 6-7 load the two JAGS extensions, one for the Wiener distribution and the1892

other for conveniently calculating the deviance information criterion (DIC), which is a method1893

for comparing the relative fit of a set of models (for a discussion on model comparisons, see1894

Myung and Pitt (2018)). Lines 10-12 describe how many chains to use during sampling, how1895

many to discard for burn-in, and the total number of samples to draw from our posterior1896

respectively. Line 15 defines which parameters we are interested in collecting samples from1897

one the sampling is finished. Lines 17-25 use our simulated data to define the variables we1898

would like pass to the JAGS code.1899

Lines 27-43 set the initial values for JAGS MCMC sampler (for a discussion on MCMC,1900

see van Ravenzwaaij et al. (2018)). While JAGS will define values based on the priors by1901

default, setting initial values can help with convergence and efficiency in sampling our joint1902

posterior. On the other hand, poorly selected starting values may result in slow or failed1903

convergence, leading to unreliable estimates. For example, in our case, we know that ndt1904

for a given participant should no more than their fastest response time, and thus we can1905

randomly initialize the ndt parameter from uniform distributions with participant-specified1906

bounds that reflect that. Lastly Lines 44-49 take in as input all of the variables specified1907

above to draws samples the joint posterior distribution.1908

11909

2 # Set random seed1910

3 np.random.seed (2020)1911

41912

5 # pyjags code1913

6 pyjags.modules.load_module(’wiener ’)1914

7 pyjags.modules.load_module(’dic’)1915

8 pyjags.modules.list_modules ()1916

91917

10 nchains = 61918

11 burnin = 2000 # Note that scientific notation breaks pyjags1919
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12 nsamps = 100001920

131921

14 # Track these variables1922

15 trackvars = [’alpha ’, ’ndt’, ’beta’, ’delta ’, ’CPPnoise ’]1923

161924

17 N = np.squeeze(genparam[’N’])1925

181926

19 # Fit model to data1927

20 y = np.squeeze(genparam[’y’])1928

21 rt = np.squeeze(genparam[’rt’])1929

22 CPP = np.squeeze(genparam[’CPP’])1930

23 participant = np.squeeze(genparam[’participant ’])1931

24 nparts = np.squeeze(genparam[’nparts ’])1932

25 ntrials = np.squeeze(genparam[’ntrials ’])1933

261934

27 minrt = np.zeros(nparts)1935

28 for p in range(0, nparts):1936

29 minrt[p] = np.min(rt[( participant == (p + 1))])1937

301938

31 initials = []1939

32 for c in range(0, nchains):1940

33 chaininit = {1941

34 ’alpha’: np.random.uniform (.5, 2., size=nparts),1942

35 ’ndt’: np.random.uniform (.1, .5, size=nparts),1943

36 ’beta’: np.random.uniform (.2, .8, size=nparts),1944

37 ’delta’: np.random.uniform (-4., 4., size=nparts),1945

38 ’CPPnoise ’: np.random.uniform (.5, 2., size=nparts)1946

39 }1947

40 for p in range(0, nparts):1948

41 chaininit[’ndt’][p] = np.random.uniform (0., minrt[p] / 2)1949

42 initials.append(chaininit)1950

43 print(’Fitting ’’simpleEEG ’’ model ...’)1951

44 threaded = pyjags.Model(file=modelfile , init=initials ,1952

45 data=dict(y=y, CPP=CPP , N=N, nparts=nparts ,1953

46 participant=participant),1954

47 chains=nchains , adapt=burnin , threads=6,1955

48 progress_bar=True)1956

49 samples = threaded.sample(nsamps , vars=trackvars , thin =10)1957

50 savestring = (’modelfits/simpleEEG_test1_simpleCPP.mat’)1958

51 print(’Saving results to: \n %s’ % savestring)1959

52 sio.savemat(savestring , samples)1960

Code Block 4: fitting Model 3 to data simulated in Code Block 2

We have omitted a few technical details associated with employing Bayesian methods1961

to fit computational models. For more comprehensive treatments, we suggest referring to1962

our Implementing model fitting procedures and estimating parameters section in the Further1963

readings.1964

Conclusions1965

In this appendix, we have showcased only one example implementation of neurocog-1966

nitive modeling. In the tutorial repositories, we have designed several illustrative exam-1967

ples in Python: https://github.com/mdnunez/pyhddmjags and R: https://github.com/1968

kiante-fernandez/Rhddmjags that follow a similar format to what we have explained here.1969
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10. Solutions1970

1. Labeling feedback given by the ICLabel website.1971

2. Plotting of histograms are left to the reader. Plots of density approximations should1972

approximately reproduce the results in Figure 2. The code for this figure is given in1973

https://github.com/mdnunez/pyhddmjags/blob/master/simpleCPP_sim.py. For the1974

corresponding translation in R see: https://github.com/kiante-fernandez/Rhddmjags/1975

blob/main/inst/templates/CPP_sim-example.R.1976

3. A comparison model would be similar to Model 3 other than the fact that CPP slopes
c per trial i are not generated by drift-rates δ, a cognitive parameter that describes the
mean rate of evidence accumulation.

(rij, xij) ∼ DDM (δj, τj, αj, βj, ηj) (20)

cij ∼ Normal(φj, σ
2
j ) (21)

Note that this comparison model has an additional parameter per participant, φ, com-1977

pared to Model 3. φ is just the mean CPP slope across trials.1978

4. We could add an addition scaling parameter ψ in the second equation that can change
based on participant j:

cij ∼ Normal(ψjδj, σ
2
j ) (22)

5. This model produces normally distributed response times, while Model 3 produces1979

response time distributions with right skews. Apart from very specific conditions (e.g.,1980

when facing a strict deadline that puts one under severe time pressure), response time1981

distributions are usually right skewed, making Model 3 more plausible.1982
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