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Quantifying evidence for—and against—Granger
causality with Bayes factors
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Testing for Granger causality relies on estimating the capacity of dynamics in one time series to forecast dynamics in another. The canonical
test for such temporal predictive causality is based on fitting multivariate time series models and is cast in the classical null hypothesis
testing framework. In this framework, we are limited to rejecting the null hypothesis or failing to reject the null – we can never validly
accept the null hypothesis of no Granger causality. This is poorly suited for many common purposes, including evidence integration, feature
selection, and other cases where it is useful to express evidence against, rather than for, the existence of an association. Here we derive
and implement the Bayes factor for Granger causality in a multilevel modeling framework. This Bayes factor summarizes information in the
data in terms of a continuously scaled evidence ratio between the presence of Granger causality and its absence. We also introduce this
procedure for the multilevel generalization of Granger causality testing. This facilitates inference when information is scarce or noisy or if we
are interested primarily in population-level trends. We illustrate our approach with an application on exploring causal relationships in affect
using a daily life study.

Granger causality | Bayes factor | multilevel vector autoregressive modeling

Technological advances are making multivariate, intensive longi-
tudinal data increasingly prevalent. The general upsurge of such
intense multivariate data affords new insights: We can now closely
examine within-person dynamics, with unforeseen potential for
addressing complex questions related to human behavior. When
zooming in on within-person dynamics, we are often interested in
the predictive capacity of our variables: can we predict current val-
ues of one time series from past values of another? For instance,
does a parent’s soothing behavior during a child’s anger episode
calm the child, aggravate the behavior, or have no effect? Or if an
individual’s emotional arousal increases, would they in turn also
feel more or less pleasant?

Statistical inference can be performed on such predictive asso-
ciations over time by testing for predictive causality, often called
Granger causality (Granger, 1969). The idea behind this infer-
ence is that if over time, changes in some variable X “Granger
cause” changes in variable Y , then past values of variable X
should contain information that helps predict Y , above and be-
yond the information already contained in past values of Y alone.
Certainly, Granger causality does not necessarily represent truly
causal relations due to the possibility of omitted variables, but the
inclusion of previous measurements of the variable itself enables
this framework to provide more information on possible causal rela-
tions than simple correlational measures. That is to say, predictive
causality analysis is limited in terms of inferring actual causality,
and the causality concept here refers specifically to the forecasting
of variables. All in all, Granger causality testing is a useful tool to
determine whether a set of variables contains useful information
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for improving the predictions of another set of variables.
Granger causality testing in time series analysis is routine in,

for example, the field of econometrics. For the social sciences, it
has been Peter Molenaar’s work that emphasized the usefulness
of this approach and extended it to better fit the typical goals of
social science research. Velicer and Molenaar (2013) gives a
broad overview of time-series analysis methods for psychologi-
cal research and highlights the utility of Granger causality testing
within this framework. Molenaar and Lo (2016) summarizes gener-
alizations of Granger causality testing by scaffolding on standard
and structural vector autoregressive (VAR; see later) models, and
includes approaches for handling heterogeneity and nonstation-
arity. Liu and Molenaar (2016) further adds to this by tackling
challenges related to nonlinearities between frequency domain
measures. Moreover, Molenaar (2019) describes a data-driven
approach for unifying standard and structural VAR models in order
to consolidate conclusions from Granger causality testing in these
two VAR variants, and emphasizes how these causal relationships
can be exploited for designing intervention studies.

Granger causality testing is typically done in the classical (fre-
quentist) inference framework (for some recent exceptions using
financial models, see Droumaguet, Warne, & Wozniak, 2016; Woz-
niak, 2016; Sen, Majumdar, & Sikaria, 2022). The classical hypoth-
esis test for predictive causality, the Wald test (see, e.g., Lütkepohl,
2005, p. 102) can only ‘reject’ or ‘fail to reject’ the null hypothesis
of no predictive causality. This means that we can only have binary
conclusions, and cannot quantify degrees of evidence in our data
in favor or against predictive causality. Even in terms of binary
conclusions, we can never ‘accept the null’ of no Granger causality.

The Bayesian approach we introduce here allows researchers
to quantify the evidence for or against Granger causality with a
single number. The direct quantification of evidence is crucial
for a number of purposes, including the support of incremental
science – that is, allowing small amounts of hard-to-obtain evi-
dence to stack across publications. Similarly, the ability to quantify
support against an association can be essential in practice. As
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an example, in studies of problematic child behavior, it is critical
to know how much evidence we have that certain factors do not
aggravate an undesirable outcome. More broadly, in the era of
big data, it becomes increasingly important to be able to make
informed decisions regarding which variables are worth monitoring,
necessitating an informed metric for evidence in favor of or against
predictive causality.

We introduce a Bayesian hypothesis test, using the Bayes
factor (Jeffreys, 1961), in order to quantify evidence in favor or
against Granger causality between variables changing over time.
Our proposed Bayesian approach performs simultaneous infer-
ence on predictive dynamics on both the group and the individual
level from multivariate time series data of multiple people. For
more information on Bayesian hypothesis testing in general see,
inter alia, Dienes (2016), Etz, Haaf, Rouder, and Vandekerckhove
(2018), Mulder and Wagenmakers (2016), Rouder, Haaf, and Van-
dekerckhove (2018), and Vandekerckhove, Rouder, and Kruschke
(2018). This Bayesian approach can help applied researchers
make decisions based on substantive goals – an applied example
using core affect measurements in experience sampling settings
is given in the Application section. Our work represents an initial
step towards developing a novel way of making inference about
Granger causality, with a proof-of-concept illustration. We have
made scripts and data accessible to carry out the inference fea-
tured in the Application section of this paper on the Open Science
Framework (OSF).1

Granger causality testing in vector autoregressive
models

We start by specifying the time series model on which our Bayesian
hypothesis test will be based. Define the temporal evolution of a
single random variable y over time t as a univariate autoregressive
model, specified as yt = ν + α1yt−1 + . . .+ αlyt−l + ut, with ν
representing a possibly nonzero intercept; ut some forecast error;
and αl the dependencies on past observations of the variable
quantified in terms of autocorrelation coefficients, at different lags
l. Lagged relationships have important value for forecasting, as
some variables of interest only change gradually, so that current
and past data can reliably predict future trends.

Certainly, more still can be learned by studying the joint dy-
namics among multiple phenomena. The vector autoregressive
(VAR) model extends the predictive framework of the autoregres-
sive model by also accounting for interdependencies among time
series of multiple related variables evolving over time. This way
each variable’s temporal evolution is not only predicted from its
own past values, but also by past values of related variables. In this
project we limit our attention to linear dependencies in the standard
VAR model. Formally, a K-dimensional VAR(L) is specified as2:

yt = ν + A1yt−1 + . . .+ ALyt−L + et, [1]

where yt = (y1t, . . . , yKt)′ is a (K× 1) vector, ν = (ν1, . . . , νK)′
is a (K × 1) vector of possibly nonzero intercepts, et =
(e1t, . . . , eKt)′ is a K-dimensional white noise or innovation pro-
cess, which in its simplest form can be represented as a sequence
of independent and identically distributed random K-vectors with
zero mean vector and covariance matrix Σ. Finally, each Ai is a
K ×K coefficient matrix of the lagged and cross-lagged effects at

1https://osf.io/qr82d/?view_only=8bb143074543486fa231f122a62e4d4e
2We will only deal with the time-domain representation of the VAR model.

lag l. Specifically, Σ and Al are defined as

Σ =

 σ2
1,1,e . . . σ1,K,e
...

. . .
...

σK,1,e . . . σ2
K,K,e


and

Ai =

 α1,1,l . . . α1,K,l
...

. . .
...

αK,1,l . . . αK,K,l

 .
Let us consider a two-dimensional (K = 2) lag 1 (L = 1) VAR

as an example. This is a special case of Equation 1 (i.e., the
bivariate VAR(1) model) specified as:[

y1,t
y2,t

]
=
[
ν1
ν2

]
+
[
α1,1 α1,2
α2,1 α2,2

][
y1,t−1
y2,t−1

]
+
[
e1,t
e2,t

]
[2]

where ν1 and ν2 represent the two elements of the intercept vector
ν, α1,1 and α2,2 are the autocorrelations in the two dimensions, re-
spectively, and parameters α1,2 and α2,1 are cross-lagged effects.
The last part denotes innovation errors, e1,t and e2,t, which can be
assumed to be bivariate normally distributed with mean zero and
covariance matrix Σ. This 2 × 2 matrix Σ contains the residual
variances for the two time series, σ2

1 and σ2
2 , in its diagonals, while

the off-diagonal element σ1,2 = σ2,1 expresses contemporaneous
association: the residual covariation between the two time-series.
While the contemporaneous association must be symmetrical, the
cross-lagged effects are not. The α1,2 and α2,1 coefficients quan-
tify the predictive power of one time series component on the other,
after controlling for past history of this latter component, hence
capturing the directionality of predictive dynamics.

As an illustration, we generated two sets of time series data from
the bivariate VAR(1) model described by Equation 2, with different
settings for the cross-effect parameters. These simulated time
series are depicted in the panels of Figure 1. For the bivariate set
in the left panel, we set the cross-effect parameters by assuming
no lagged dependency between the time series (α1,2 = α2,1 =
0), while in the right panel the time series were simulated with
predictive association: past values of Series 2 are predictive for
Series 1 (α1,2 6= 0, α2,1 = 0). The contemporaneous association
σ1,2 is equal to 0 in both sets. As can be seen, in the left panel
there does not appear a systematic dependence between changes
in the two time series, while in the right panel, changes in Series 2
(upper trajectory) are followed by similar changes in Series 1 (lower
trajectory).

Granger causality testing in the classical framework. Granger
(1969) defined a concept of causality in the context of VAR models
that built on the idea that a cause cannot come after the effect.
Based on his work, predictive causality or Granger causality testing
was developed into a statistical tool to infer whether one time series,
y1,t, can be used to forecast another, or more specifically if past
and current values of time series y1,t contain additional information
on future values of another time series y2,t, above and beyond
what is already contained in past and current y2,t alone. The idea
behind predictive causality testing is that having nonzero cross-
lagged effects (e.g., α1,2 6= 0 or α2,1 6= 0) decreases the error
variation (σ2

1,1,e or σ2
2,2,e), meaning that the prediction becomes

more precise. Currently, significance testing using the Wald test is
the default method for assessing predictive causality on the time
domain, and the test tool is limited to a single subject design (see,
e.g., Lütkepohl, 2005; Liu & Molenaar, 2016).

2 of 8 Oravecz et al.

https://osf.io/qr82d/?view_only=8bb143074543486fa231f122a62e4d4e


AUTHOR

FI
NAL

VERSIO
N

1 10 20 30 40 50

Time

-1

0

1

2

L
ev

el

Series 2 is not predictive of Series 1

1 10 20 30 40 50

Time

-1

0

1

2

L
ev

el

Series 2 is predictive of Series 1

Series 1
Series 2

Fig. 1. Two sets of generated bivariate time series. The time series in left panel are independent, while the time series in the right panel have predictive dependence: Changes
in Series 2 at time t are followed by similar changes in Series 1 at time t + 1.

Bayes factors for Granger causality

To recapitulate our goals, we will derive and apply Bayes factors
for Granger causality testing in order to quantify relative evidence
in favor or against the predictive association of one time series
forecasting the other. In this section we provide a general introduc-
tion to the Bayes factor and derive its specific cases for single and
multilevel VAR models.

Defining the Bayes factor. One way of comparing competing
models in the Bayesian probabilistic inference framework is to
use Bayes factors (Jeffreys, 1961). The Bayes factor derives
immediately from Bayes’ rule as follows: Let H1 and H2 be two
competing accounts (i.e., hypotheses or models) for the data X,
and let p(X | H1) and p(X | H2) be the likelihood of X under
these accounts. By Bayes’ rule, the posterior probability of H1
(Hypothesis 1, which may be a “null” hypothesis but need not be)
is then:

p(H1 | X) = p(X | H1)p(H1)
p(X) . [3]

As can be seen, the posterior probability of Hypothesis 1, p(H1 |
X), is calculated by multiplying the likelihood of the data, p(X |
H1), with the prior probability of Hypothesis 1, p(H1), and dividing
this by the marginal likelihood, p(X). We can replace H1 with
H2 for the posterior probability of Hypothesis 2 (an alternative
hypothesis or model).

To obtain the relative posterior probability of H1 and competing
account H2, given the data, we need to formulate Equation 3 once
for H1 and again for H2 and then divide each side of the equiv-
alence. Conveniently, the marginal likelihood p(X) then cancels
out, resulting in:

p(H1 | X)
p(H2 | X)︸ ︷︷ ︸
Posterior ratio

= p(H1)
p(H2)︸ ︷︷ ︸
Prior ratio

× p(X | H1)
p(X | H2)︸ ︷︷ ︸

Bayes factor

. [4]

Here we have already re-grouped remaining factors into the prior
ratio (relative prior probability of the accounts before seeing the
data) and the Bayes factor (relative evidence in the data), which
multiply to obtain the posterior ratio (relative probability of the
accounts after seeing the data). Equation 4 can be restated again
as follows:

p(X | H1)
p(X | H2)︸ ︷︷ ︸

Bayes factor

= p(H1 | X)
p(H2 | X)︸ ︷︷ ︸
Posterior ratio

/
p(H1)
p(H2)︸ ︷︷ ︸
Prior ratio

[5]

Table 1. Descriptive labels for certain Bayes factors.

Label B2:1 p(H2|X)∗

Data strongly support H2 10 91%
Data weakly support H2 3 75%
Data provide ambiguous information 1 50%
Data weakly support H1 1/3 25%
Data strongly support H1 1/10 9%
∗: p(H2|X) is the posterior probability of H2 assuming prior
equiprobability between H1 and H2. Adapted from Etz and Van-
dekerckhove (2016).

If we assume prior equiprobability between the hypotheses,
p(H1) = p(H2), the prior ratio cancels out and the Bayes factor
equals the relative posterior probability (i.e., posterior probability
ratio) of H1 over H2. More generally, the Bayes factor expresses
the degree to which the data cause this probability ratio to shift. In
our notation, we will indicate by subscripts which probability ratio
is being shifted: B1:2 will refer to the ratio of Hypothesis 1 over
Hypothesis 2, while B2:1 will refer to the inverse. Note that these
two are just reciprocal transforms of each other, B1:2 = 1/B2:1,
so that we may choose either one to state our results – whichever
is more convenient.

If the Bayes factor of H1 over H2 is large, meaning much
greater than 1 (see Table 1 for indicative values), then the relative
probability of H1 over H2 increases. If instead it is small, meaning
less than 1 and closer to 0, then the relative probability of H1
over H2 decreases (or, equivalently, the probability of H2 over H1
increases). Since the Bayes factor expresses, in a single number,
the degree to which a rational observer should change their belief
in one hypothesis over another, we interpret the Bayes factor as
the amount of evidence provided by the data (Evans, 2014).

The Savage-Dickey density ratio estimator for single-level
VAR. We now derive the Savage-Dickey density ratio estimator
(Dickey & Lientz, 1970; Wagenmakers, Lodewyckx, Kuriyal, & Gras-
man, 2010) for the predictive causality Bayes factor for a simple
single-level VAR model. Generally speaking, the Savage-Dickey
density ratio provides straightforward estimation of the Bayes fac-
tor for testing an equality constrained hypothesis against an un-
restricted alternative. Let us first split the parameters of the VAR
model, θ, into two subsets: θ = (δ, ε). δ will denote the parame-
ters of interest for the predictive causality test, while ε will denote
other parameters of the model that are not currently of interest
for testing. As a concrete example, consider the two-dimensional
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Fig. 2. Posterior and prior densities of α1,2 based on the data displayed in Figure 1. Circular markers indicate the heights of the densities at 0.

VAR with at most one lag (L = 1), as shown in Equation 2. When
we test the predictive causality of time series 2 on time series
1, the parameter of interest is the cross-effect parameter, so we
choose δ = α1,2, while ε will contain the remaining parameters:
ε = (α1,1, α2,2, α2,1,ν,Σ). The null hypothesis, or null model of
no predictive causality, H0, is then specified by α1,2 = 0, and the
alternative model/hypothesis, H1, is α1,2 6= 0. The conditional
density (denoted by p0(·) to indicate conditioning on H0 and p1(·)
to indicate conditioning on H1) of α1,2 is continuous at 0, so that

lim
α1,2→0

p1(ε | α1,2) = p0(ε). Hence there is no difference between

the priors of the other parameters in the null and the alternative
model, that is p1(ε | α1,2 = 0) = p0(ε). Accordingly, the marginal
likelihood under the null model of no predictive causality is

p0(yt) =
∫
p1(yt | ε, α1,2 = 0)p1(ε | α1,2 = 0)dε

= p1(yt | α1,2 = 0).

Now by applying Bayes’ rule we get

p0(yt) = p1(α1,2 = 0 | yt)p1(yt)
p1(α1,2 = 0) . [6]

To obtain the Bayes factor, we divide p0(yt) by p1(yt), as in Equa-
tion 4. This gives the Savage-Dickey density ratio—the ratio of the
posterior and prior ordinates, evaluated at the test value—which is
a simple estimator for the Bayes factor:

B(α1,2)0:1 = p1(α1,2 = 0 | yt)
p1(α1,2 = 0) . [7]

As can be seen, this is the ratio of the posterior for the parameter of
interest under the alternative model evaluated at 0, divided by the
prior of that parameter under the alternative model evaluated at 0.
Inverting the right hand side of the expression in Equation 7 gives
us B(α1,2)1:0, the Bayes factor in favor of predictive causality.

Example results from a single-level VAR model. Figure 2 shows a
graphical representation of some of the results from fitting a VAR
model for the two sets of bivariate time series depicted in Figure 1.
In both panels of Figure 2, smoothed posterior densities of α1,2 are
displayed in orange, and the prior on α1,2, which was a standard
normal distribution in our example, is shown in grey. The circular
markers indicate the heights of these densities at α1,2 = 0, which
we need for testing the hypotheses of α1,2 = 0 or α1,2 6= 0.

Per Equation 7, to get the Bayes factor of no predictive causality
we divide the height of the posterior density by the height of the

prior density at 0. For the set of time series shown in the left panel
of Figure 1, this gives 13.7, which indicates strong evidence for
no predictive causality from Series 2 to Series 1. Evidence in
favor of predictive causality can also be calculated for this pair of
time series by dividing the height of the prior by the height of the
posterior at 0, which gives 0.07 (the reciprocal of 13.7).

By contrast, in the right panel of Figure 2, there is strong evi-
dence in favor of predictive causality of Series 2 for Series 1: there
is approximately 27.8 times more support for predictive causality
than for no predictive causality, based on the prior and posterior
densities. This BF corresponds to the same time series data as in
the right panel of Figure 1.

The multilevel VAR case. Bayesian vector autoregressive models
are popular in economics (e.g., Litterman, 1986; Wozniak, 2016)
and natural sciences (e.g., Lee, Chapman, Henderson, Chen, &
Cane, 2016), where it is often possible to measure variables with
high precision. Due to the different focus of these applications
they do not typically incorporate multilevel designs. In social and
behavioral sciences, however, we are often left to contend with
fewer observations and noisy data. While this means less informa-
tion about each individual of the analysis, in social and behavioral
research it is common to measure multiple subjects who are jointly
representative of some population. By relying on multilevel mod-
eling techniques, we can then pool information across subjects
and increase estimation accuracy for subjects with more noisy
data (e.g., Baribault et al., 2018; Vandekerckhove, Verheyen, &
Tuerlinckx, 2010). Moreover, this framework helps us explore
group-level trends. For an overview, rationale and implementation
of the two-dimensional multilevel VAR model with a social and
behavioral science focus, see Li, Wood, Ji, Chow, and Oravecz
(2022).

The multilevel VAR(L) model can be defined as follows:

yp,t = νp + A1,pyp,t−1 + . . .+ AL,p(yp,t−L) + ep,t, [8]

ep,t ∼ N(0,Σp).

The above equation represents the within-person model – that is,
it describes the time-dynamics for each person p. Specifically, νp
is a K × 1 vector of person-specific intercepts; Al,p with (l =
1, . . . , L) is a K × K person-specific coefficients matrix of the
lagged and cross-lagged effects at lag l; and ep,t is a K× 1 vector
of random innovations following a multivariate normal distribution
with a person-specific covariance matrix Σp. Matrices Al,p and
Σp have the same structure as defined for the single-level case.

4 of 8 Oravecz et al.



AUTHOR

FI
NAL

VERSIO
N

-0.1 -0.05 0 0.05 0.1
Cross-lagged coe/cient ,1;2

0

5

10

15

P
ro

b
ab

il
it
y

d
en

si
ty

Arousal is not predictive of Valence (B0:1 = 13:1)

-0.1 -0.05 0 0.05 0.1
Cross-lagged coe/cient ,2;1

0

2

4

6

8

10

12

P
ro

b
ab

il
it
y

d
en

si
ty

Valence is not predictive of Arousal (B0:1 = 25:5)

Prior

Posterior

Fig. 3. Results on the group-level Bayes factor. Aggregating over participants, the Bayes factors support the null hypothesis of no Granger causality in both directions
(Arousal-to-Valence nor Valence-to-Arousal).

Here we limit our focus to the stationary VAR(1) process, with
stationarity defined for each person’s time series as all the roots of
the determinant of matrix D−A1,pyp,t−1 having moduli greater
than 1 (Lütkepohl, 2005), with D denoting the identity matrix.

All within-level parameters were person-specific and come from
joint level-2 (i.e., group-level or population-level) or between-person
distributions. Specifically, elements of the A matrix were also
assigned normal distributions with population mean and population
standard deviation estimated as αk1,k2,p ∼ N(µαk1,k2

, σαk1,k2
),

for all subscripts k1 and k2, where these subscripts refer to the
pair of dimensions connected by coefficient α. Furthermore, the
person-specific intercepts were assumed to be normally distributed
with group mean and standard deviation estimated from the data:
νk1,p ∼ N(µν,k1 , σν,k1 ).

The multilevel VAR model was cast in a Bayesian framework,
where all model parameters are required to have prior probability
distribution. For the person-specific parameters, the above defined
level-2 (population) distribution function as priors. In case of the
parameters of these level-2 distributions, the intercept parameters
were assigned normal hyperprior distributions, with slightly wider
range for the intercept’s population mean µν,k1 ∼ N(0, 10) than
for the population mean of elements of the A matrix µαk1,k2

∼
N(0, 1). The corresponding population standard deviations, σν,k1

and σαk1,k2
had standard half-normal priors assigned to them

(i.e., a standard normal distribution truncated to the positive real
line to ensure that these parameters cannot take negative values).
Finally, the Σ matrix was Cholesky decomposed, with priors set to
default values suggested in the Stan manual (Stan Development
Team, 2017). All these prior settings codify our a priori uncertainty
regarding the exact values of each parameter.3

For the multilevel VAR case, we will test Granger causality
both at the p-individual level and at the population level. For each
participant in a study, we may compute the evidence for (or against)
the hypotheses that αk1,k2,p = 0, and/or we may evaluate the
population-level hypothesis that µαk1,k2

= 0.

Parameter estimation for the multilevel VAR. The Bayesian statisti-
cal inference framework offers flexible tools for implementing com-
plex multilevel models, such as a multilevel extension of the VAR.
Markov chain Monte Carlo methods (Robert & Casella, 2004) pro-

3Each of these is only one of many possible prior distributions for its parameter. These distributions
capture the relative plausibility of different values before taking into account the data, and in our
case involve some amount of theoretical commitment to the implications of these choices. Other
prior distributions are possible, and might encode slightly different models and research questions
(Etz et al., 2018).

vide for efficient estimation of high-dimensional parameter spaces
and the resulting posterior distributions of the model parameters
can be used to make probabilistic statements about quantities of
interest.

Li et al. (2022) implemented a one-step estimation for the two-
dimensional multilevel VAR model in JAGS (Plummer, 2003), Stan
(Carpenter et al., 2017) and Mplus (Muthén & Muthén, 1998-2017).
Here we follow their steps and use a one-step estimation of a multi-
dimensional VAR model implemented in Stan. The Stan software
is a generic Bayesian inference engine and can be interfaced for
example with R (R Core Team, 2016) or MATLAB (Baribault &
Collins, 2021; Matzke, Boehm, & Vandekerckhove, 2018). These
features together will lead to a tool that is easily adaptable for the
needs of complex behavioral science applications. We have devel-
oped and tested Stan code to estimate a single-level VAR model
with K dimensions and L lags with an R wrapper that includes the
Bayes factor calculations. Alternatively, there has also been an R
package developed (Epskamp, Deserno, & Bringmann, 2016) that
can estimate multilevel VAR models; however the estimation ap-
proach implemented in this package relies on post-hoc estimation
of the residual covariances and it is primarily non-Bayesian (but
can call Mplus for Bayesian estimation).

Application

We demonstrate inference for Granger causality with Bayes factors
using data from a 28-day long experience sampling study. Partici-
pants (N = 52) were asked to provide momentary self-reports on
various aspects of their psychological states in their everyday life
environments. All procedures were approved by the local Internal
Review Board (protocol 00001017). Our analysis will focus on their
reported core affect (CA; Russell, 2003). CA is a two-dimensional
psychological construct that captures how pleasant and how ac-
tive/aroused a person feels at any given moment. CA is assumed
to fluctuate over short time scales time due to the influence of
internal and external factors and its in the core of all our emotional
experience (Barrett, 2016). These two dimensions are theorized to
represent independent features of emotional experiences.

Under this theoretical framework, we would not expect the av-
erage valence experience one day to Granger cause the daily
average arousal experience the next day, or vice versa (i.e., the
theory predicts a lack of predictive causality). The existing classical
inference framework would not allow us to quantify evidence in fa-
vor of such a theoretical position. By contrast, we will demonstrate
that the Bayes factor allows us to summarize evidence favoring the
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absence of Granger causality (for more discussion on the differ-
ences between Bayes factors and null hypothesis testing, see, i.a.,
Dienes & McLatchie, 2018; Vandekerckhove et al., 2018; Wagen-
makers et al., 2018). To recapitulate, we do not only test for the
presence of an effect (Granger causality) here, but also directly
for a null effect (absence of Granger causality). This goes beyond
supporting a null hypothesis by “failing to reject” it, as is routinely
done in the classical inference framework. Moreover, the magni-
tude of evidence in favor or against Granger causality will also be
quantified.

Because our focus here is on introducing and illustrating Bayes
factors for Granger causality, we simplify our analysis for ease of
exposition. First, we only fit a bivariate VAR(1) model – that is, we
restrict our focus to lag=1 effects. This model is reasonably for our
data given that we work with daily aggregates of two dimensional
core affect measures. Second, we removed data from three par-
ticipants who did not have complete data on all 28 days, as well
as from one participant whose data did not meet our criterion for
stationarity in their time series.4

We fit the above specified multilevel VAR model to the data
of the remaining participants (N = 48) in R and Stan using the
package rstan (Stan Development Team, 2016). We called Stan
from R and ran 6 chains in parallel with 1,000 warm-up and 10,000
iterations each, resulting in a final posterior sample size of 60,000
for each parameter. We found no issues with convergence (all R̂
below 1.1; Gelman et al., 2013) and quality of sampling (effective
sample size was more than 1000 for 90% of the parameters and
at least 150 for each). For the Savage-Dickey approximation of the
Bayes factor, we used the polspline package (Kooperberg, 2020)
to kernel smooth the posterior distributions of relevant parameters
(Wagenmakers et al., 2010).

Results. We start by looking at group-level results. We used the
Bayes factor to infer whether (a) changes in arousal predict (i.e.,
Granger cause) changes in valence and whether (b) changes in
valence predict (i.e., Granger cause) changes in valence. To obtain
the Bayes factor for (a), we calculated the heights of the prior and
posterior densities of µα,1,2 at 0. To obtain the Bayes factor for
(b), we calculated the heights of the prior and posterior densities
of µα,2,1 at 0. We found around 12 times more support for no
Granger causality for arousal predicting valence than for Granger
causing it, and 27 times more support for no Granger cause as
opposed to Granger cause for valence predicting arousal. Results
are displayed in Figure 3. They represent strong evidence on the
group level for no predictive causality between the two core affect
dimensions.

Next we look at the person-level results. We test the same
propositions as above, but now for each person separately. For cal-
culating the evidence for each person in terms of a Bayes factor for
whether (a) changes in arousal Granger cause changes in valence,
we calculated the heights of the prior and posterior densities of
α1,2,p at 0. For calculating the evidence for each person in terms of
a Bayes factor for whether (b) changes in valence Granger cause
changes in arousal, we calculated the heights of the prior and pos-
terior densities of α2,1,p at 0. The person-level results mirror the
group level: almost all participants show evidence against Granger
causality and none show evidence for Granger causality.

The person-level results are visualized in Figure 4. The mark-
ers are person-level point estimates of the cross-effect parameters

4We examined stationarity by first detrending each person’s time series data via Hodrick-Prescott
filtering using the mFilter package in R (Balcilar, 2019) and then running the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test from the tseries package (Trapletti & Hornik, 2022).
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Fig. 4. Person-level estimates of the cross predictive parameters α1,2 and α2,1,
color-coded based on their corresponding Bayes factor. Each marker represents
a participant’s α values. The lines in both dimensions indicate 3-support intervals,
which are constructed such that the posterior density for values inside the interval is
at least 3 times higher than the prior density. Orange marks evidence for no Granger
causality for both directions, purple and green for one direction only, based on Bayes
factors being larger than 3.

α1,2 and α2,1. The intervals in both dimensions are 3-support
intervals (Etz, Dablander, Gronau, & Wagenmakers, 2020): they
contain those values of the cross-effect parameters whose proba-
bility density increased by at least a factor of 3 due to the data. In
other words, if these intervals contain 0, then the null hypothesis
for the cross-effect parameter is supported by a Bayes factor of at
least 3. The intervals were color coded based on these intersec-
tions with 0, with the orange crosses indicating evidence against
Granger causality in both directions. Out of 48 participants, 30
showed substantial evidence for the absence of causality in both
directions (orange, B(α1,2,p)0:1 and B(α2,1,p)0:1 both larger than
3), and all showed substantial evidence for the absence of causal-
ity in at least one direction (purple if B(α1,2,p)0:1 ≥ 3 and green if
B(α2,1,p)0:1 ≥ 3). None showed substantial evidence in support
of predictive causality in either direction (all B(α1,2,p)1:0 ≤ 3 and
B(α2,1,p)1:0 ≤ 3).

Discussion

We have introduced a novel inference tool, a Bayes factor for
Granger causality testing, which can simultaneously evaluate evi-
dence in favor and against Granger causality in multivariate time-
series data. Moreover, the ratio of evidence for these two com-
peting hypotheses can be quantified on a continuum. This means
that for example we can state how much more evidence we have
for a null hypothesis of no Granger causality in our data than for
an alternative hypothesis of Granger causality (or vice versa). We
have illustrated how useful such flexibility in inference can be with
an example where the underlying theory suggested no predictive
causality between affect qualities on a day-to-day timescale.

We derived the Bayes factor to perform inference on both the

6 of 8 Oravecz et al.
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group and the individual level. This is especially important for
applications in the social and behavioral sciences, where aggrega-
tion of data over participants or groups is often critical in order to
amass enough evidence. However, we note that not all the Bayes
Factors calculated in this analysis are independent of one another.
This makes it improper to combine Bayes factors for compound
statements (e.g., α1,2 > 0 and α1,2,p > 0). For such statements a
new model comparison would need to be set up to test the com-
pound proposition directly. We also briefly demonstrated the use
of B-support intervals, which allow for a visual test of many null
hypotheses at once.

Our work presents an introduction of Bayes factors to infer-
ence on Granger causality in social science. This work represents
an initial step towards developing a rigorous novel way of testing
Granger causality, with the aim of providing a proof-of-concept il-
lustration. Below, we detail certain simplifications and assumptions
that underlie our approach. Future research could evaluate the
tenability of these simplifications and assumptions.

We made didactic simplifications in our modeling approach,
including only discussing the lag=1 case, and not modeling missing
data in our time series. The latter extension can easily be made by
consulting Li et al. (2022). The former could be a straightforward
extension in a future research project.

We would like to emphasize that this initial implementation of the
Bayes Factor test for Granger causality is based on assumptions
that may limit the generalizability of our results. First, all inference
is conditional on the presented AR model specification and the
corresponding priors on the parameters, and on our choices of
measuring the modeled variables, in our case valence and arousal.
For example, we used a single variable measure of valence, but
the dynamics might actually be different on its positive end of the
scale versus the negative end of the scale. Second, we did not
examine whether the lead-lag relationships between valence and
arousal change over time, but assumed that it would not fluctuate.
If a lead-lag relationship oscillates over time, this could lead to
estimates of zero cross-effect when inappropriately aggregated
over time. Third, our conclusions are limited to the timescale we
chose, in this case day-to-day, and are based on the assumption
that this is a sufficient rate to discover cross-coupled dynamics.

Finally, we note that the classical significance testing framework
for predictive causality provides a static testing environment: it is
typically performed only after the data collection is concluded (or
else multiple testing corrections need to be worked out). In the
Bayesian framework sequential updating of evidence is the stan-
dard mode of operation and is straightforward (Oravecz, Huentel-
man, & Vandekerckhove, 2017). The Bayes factor approach we
introduced presents a tool for inference involving sequential up-
dating of evidence, for example when time series data is being
acquired in real time. With continuous streaming of information
becoming increasingly accessible (e.g., via passive sensing with
wearables, see e.g., Brick, Mundie, Weaver, Fraleight, & Oravecz,
2020), our new Bayesian approach has great potential for preven-
tion science.
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