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OBJECTIVES: Cognitive change is a complex phenomenon encompassing both retest-related performance gains and potential cognitive
decline. Disentangling these dynamics is necessary for effective tracking of subtle cognitive change and risk factors for ADRD. METHOD: We
applied a computational cognitive model of learning and forgetting to data from Einstein Aging Study (n = 316). EAS participants completed
multiple bursts of ultra-brief, high-frequency cognitive assessments on smartphones. Analyzing response time data from a measure of visual
short-term working memory, the Color Shapes task, and from a measure of processing speed, the Symbol Search task, we extracted several
key cognitive markers: short-term intraindividual variability in performance, within-burst retest learning and asymptotic (peak) performance,
across-burst change in asymptote and forgetting of retest gains. RESULTS: Asymptotic performance was related to both MCI and age, and
there was evidence of asymptotic slowing over time. Long-term forgetting, learning rate, and within-person variability uniquely signified MCI,
irrespective of age. DISCUSSION: Computational cognitive markers hold promise as sensitive and specific indicators of preclinical cognitive

change, aiding risk identification and targeted interventions.

Retest learning | Computational modeling | Subtle cognitive decline | Cognitive psychometrics

Mounting evidence suggests that neuropathological
changes associated with Alzheimer's Disease and
Alzheimer’s Disease Related Dementias (AD/ADRD) are
detectable up to three decades prior to the clinical diagnosis
of dementia (Sperling et al., 2011; Hadjichrysanthou et al.,
2020; Verlinden et al., 2015; Ritchie et al., 2015). During
this preclinical stage, cognitive and behavioral changes are
subtle not only in magnitude but also in terms of the underly-
ing cognitive processes they reflect. Assessing these subtle
changes accurately in longitudinal studies is hindered by
both within-person variability in performance (MacDonald
et al., 2009) and retest-related effects (Wilson et al., 2006).
Retest (or practice) effects refer to the ubiquitous finding
that performance on cognitive tests improves with repeated
testing.

It is widely recognized that retest effects can bias lon-
gitudinal estimates and intervention effects. Retest effect
sizes range between 0.1 and 0.4 SD units (Calamia et al.,
2012; Goldberg et al., 2015; Zelazo et al., 2014; Morrison
et al., 2015; Salthouse, 2009, 2010). This retest learning
can obscure years of memory decline in preclinical AD (Hall
et al., 2000) and overwhelm normative cognitive aging ef-
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fects, which are in the range of 0.01-0.03 SD units per year
(Lipnicki et al., 2017). These effects confound the detection
of cognitive change by biasing estimates of the underlying
performance on a given assessment. There is currently no
consensus on best practice to address retest effects.

Importantly, recent studies suggest that retest effects are
not merely a source of bias but may also provide important
signals for detection of subtle cognitive impairment. For
example, preclinical AD is marked by a reduction in practice
effects, and the magnitude of retest gain is inversely related
to the risk of progressing to a clinical level of impairment
(Goldberg et al., 2015; Hassenstab et al., 2015; Young et
al., 2023). These findings suggest that assessment of prac-
tice effects may provide face-valid indicators of preclinical
AD, with patterns of diminishing practice providing valuable
insights into the early stages of cognitive impairment.

These findings underscore the potential value in char-
acterizing cognitive retest effects and distinguishing them
from long-term changes in cognitive functioning. Traditional
longitudinal studies obtain cognitive assessments at widely-
spaced intervals (e.g., annually), making it challenging or
impossible to cleanly separate retest effects from long-term
cognitive change (Hoffman et al., 2011; Rentz et al., 2013;
Mortamais et al., 2017). Strategies like the measurement
burst design (Sliwinski, 2008) can play a crucial role in dis-
entangling these effects and improving the reliability of stud-
ies aimed at detecting and understanding subtle cognitive
changes. Measurement bursts involve the administration
of ultra-brief cognitive tests at high frequency — often mul-
tiple times within a short period (e.g., weekly or monthly).
By conducting assessments in relatively quick succession,



measurement bursts capture short-term fluctuations and
trends in cognitive performance and allow us to distinguish
immediate retest effects from more lasting changes in cog-
nitive abilities. This improves the granularity and ecological
validity with which learning and forgetting processes can be
captured as they unfold over time (Moore et al., 2017; Singh
et al., 2023). Moreover, this design also captures day-to-day
variability in cognitive performance, which has itself been
linked to unhealthy aging (Cerino et al., 2021).

In the present study we perform model-based computa-
tional phenotyping (Patzelt et al., 2018) to quantify individual
differences in cognitive retest effects and isolate them from
longer-term changes in cognitive ability. We make use of
a multi-timescale learning process model to decompose
cognitive performance time-series data—collected across
multiple bursts of multiple days of high-frequency assess-
ment—into a set of theoretically meaningful and behaviorally
interpretable model parameters, or cognitive markers; for
example, change in asymptotic (peak) performance from
burst to burst (cognitive decline), performance inconsistency
(variability), rate of retest improvement (learning), and loss
of retest advantages between measurement waves (forget-
ting). These indicators go beyond summarizing data in
simple statistical measures, and the approach has the po-
tential to reveal new markers of subtle cognitive change and
risk factors for ADRD.

Since the goal of proposing this methodological tool is
the early identification of ADRD risk, we selected tasks that
assess cognitive domains, such as processing speed (e.g.,
Symbol Search task), and working memory (e.g., Color
Shapes task) that are implicated in preclinical AD specifi-
cally. Notably, meta-analytic results demonstrate that work-
ing memory and processing speed have equivalent rates
of decline to episodic memory among cognitively normal
individuals with elevated beta-amyloid (Baker et al., 2016).
Previous work also showed that ambulatory measures of
associative memory, processing speed, and working mem-
ory were associated with AD biomarker levels at baseline to
a similar degree as conventional cognitive measures (Han
et al., 2017; Nicosia et al., 2023). Although our methodol-
ogy does not directly measure episodic memory, it incor-
porates statistical models that examine rates of learning
and forgetting, which are core features of early cognitive de-
cline in AD/ADRD. By leveraging intensive longitudinal data,
these models provide insight into cognitive processes that
traditional measures of episodic memory typically assess,
thereby addressing critical aspects of early-stage decline.

The core of our approach to analyzing high-frequency
cognitive assessments is a computational process model of
learning, the Bayesian double exponential model (BDEM).
In previous studies, double exponential learning models
have shown good fit to practice effects in repeated cognitive
testing (Broitman et al., 2019; Munoz et al., 2015). There
is also evidence that the multilevel generalization of this
approach can reveal individual differences in learning pro-
cesses that are associated with age and mild cognitive im-
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pairment (Oravecz et al., 2022). Using this approach asymp-
totic performance is an optimized measure of best possible
performance, and change from year-to-year in asymptotic
performance represents a practice effect free assessment
of within-person change over time. This "change in asymp-
tote" parameter captures across-bursts differences relative
to the person’s initial asymptote, so that the current model
already controls for the participant’s baseline task ability
through a model parameter. In the present study, we ex-
tend this modeling approach with an account of the degree
to which individuals experience loss of retest gains across
measurement bursts. We interpret this new parameter as
reflecting the rate of long-term “forgetting’ of retest related
gains that occurs between measurement bursts (i.e., over
a one-year interval). The current study was designed to
examine whether retest learning features capture relevant
phenotypic information (i.e., memory impairment) that is
common among adults with age-associated mild cognitive
impairments (MCI).

Methods

Participants and sampling procedures. The Einstein Ag-
ing Study (EAS) is an ongoing longitudinal study of risk
factors for MCI and dementia. Participants for the EAS were
recruited via registered voting lists in Bronx County, NY. All
are English- speaking, community-residing, ambulatory, and
aged 70 years and over. All participants provided written
informed consent, and the study was approved by the Al-
bert Einstein College of Medicine Institutional Review Board.
In the current analysis, we had 316 participants, of whom
86 (27.2%) completed one burst, 31 (9.8%) completed two
bursts, 51 (16.1%) completed three bursts, 76 (24.1%) com-
pleted four bursts, 50 (15.5%) completed five bursts, and 22
(7.0%) completed six bursts. This study engages in ongoing
recruiting, so the variable number of bursts reflects, in part,
time since enroliment. The mean age (standard deviation
in parentheses) of the sample at baseline was 77.54 (4.98)
years and 67% were female (n = 105 male, and n = 211
female). The sample was racially and ethnically diverse
with 46.2% (n = 146) identifying as non-Hispanic Whites,
39.9% (n = 126) as non-Hispanic Blacks, 9.8% (n = 31) as
Hispanic Whites, 2.9% (n = 9) as Hispanic Blacks, 1.0%
(n = 3) as Asian, and 0.3% (n = 1) as more than one
race/ethnicity. The mean education of the sample was 15.09
(3.55) years. Based on the neuropsychological assessment
and Jak-Bondi criteria (Jak et al., 2009), 29.1% (n = 92) of
participants were classified as having MCI at baseline. In
the analysis we included (a) age at Burst 1, (b) MCI status
at Burst 1, (c) sex, (d) number of years of education, (e)
race, and (f) ethnicity.

The EAS follows a measurement burst design consisting
of repeated bursts of ambulatory ecological momentary as-
sessments and clinic-based neuropsychological evaluations
and collection of demographic information. During an ambu-
latory burst of 16 days, participants completed six brief ses-
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Fig. 1. lllustrations of the two cognitive tasks in the Einstein Aging Study. Left: A trial from the Symbol Search task. Right: A trial from the Color Shapes task.

sions (up to five minutes each) per day on a study-provided
smartphone, during their typical waking hours in daily life
settings. These brief sessions were composed of cognitive
assessments (‘brain games’) and brief self-reports about
their daily experiences (not analyzed in the current study).
The middle four of the six sessions were prompted by beeps
and were scheduled approximately 3.5 hours apart, with
times varying randomly across the days of the week. Morn-
ing and evening sessions were self-responding. After each
burst, participants returned the study smartphone at a clinic
visit for data download. Although the study aimed for annual
follow-ups, the number of years passed between bursts var-
ied across bursts and people (M = 1.01, SD = 0.30). We
note that our modeling approach took into account the be-
tween and within-person variations in elapsed time between
bursts, that is, it accounts for irregularly-spaced bursts.

Materials. While several cognitive domains are measured
in the EAS, here we focus on RT data from the Symbol
Search task, measuring processing speed. We analyzed
daily aggregates of RTs. To provide some evidence on the
robustness of these findings, we also briefly summarize
results from analyzing RT data from the Color Shapes task
(measuring visual working memory) with the same model.

Demographics. The demographic measures were coded
based on self-reports from the participants via a question-
naire. In the current analyses we used age (in years, stan-
dardized for the analysis), sex (male/female, male as refer-
ence), education (years in school, standardized), and ethnic-
ity (Caucasian/African American/Hispanic White/Hispanic
Black/Asian/Other).

Mild cognitive impairment status. All participants underwent
neuropsychological assessment to determine their cognitive
status, including measures of memory, executive function,
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attention, language, and visuospatial ability. MCI status was
classified by the Jak-Bondi criteria (Jak et al., 2009). In
short, to be classified as MCI, the participant needed to
have impaired scores on at least two measures of the same
cognitive domain or impaired score in at least three out of
five cognitive domains; or they needed to show functional
decline, as assessed by the Instrumental Activities of Daily
Living Scale (Lawton & Brody, 1969), where impairment was
defined as scores of one standard deviation below the sex-,
age- and education- adjusted normative mean.

The Symbol Search task. The Symbol Search task, shown
on the left side of Figure 1 measures processing speed. In
the current study, on each trial of the task, participants saw
three symbol pairs at the top of the screen and two symbol
pairs at the bottom of the screen. They were instructed
to match as quickly and accurately as they could one of
the two pairs presented at the bottom to one of the three
pairs at the top. Participants completed 11 trials per session.
We analyzed daily aggregates of correct-trial RTs with the
BDEM.

The Color Shapes task. The Color Shapes task illustrated on
the right side of Figure 1 captures visual short-term working
memory binding task and has been shown to be sensitive to
cognitive status and early risk for ADRD in cross- sectional
studies. Participants are asked to memorize the color and
shape of objects and then judge whether a subsequent
probe is ‘same’ or ‘different’. Participants completed seven
trials per session. We analyzed daily aggregates of RTs
with the BDEM.

Statistical Analysis.In order to illustrate our analytical
approach, Figure 2 shows a graphical representation of
response times (RTs) over measurement occasions from
a synthetic individual participating in three measurement
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Fig. 2. lllustration of the Bayesian double exponential model with three bursts of Symbol Search data for one synthetic participant. Data are displayed as dots colored green for
Burst 1, orange for Burst 2 and purple for Burst 3. Corresponding negative exponential curves (solid lines) show model fit. The model captures multiple trends at once, including
within-burst retest learning (each exponential curve declines), forgetting (each new curve starts higher than the previous one ended), across-burst retest learning (worse
performance in the beginning of the study than at the end), and across-burst change in peak performance (the asymptote of each exponential curve is higher than the last).

bursts. Bursts are depicted in different colors, and each
dot in the figure refers to the average RT of all trials (in all
sessions) on a given day.

Figure 2 shows multiple competing processes generating
the displayed RT data based on the Bayesian double nega-
tive exponential modeling approach. Globally, we see that
in the beginning of the study RTs are slower (around 1.9 s)
than at the end of the study (under 1.2 s) — an improvement
in cognitive performance likely results from retest learning
across all the assessments in the study. At the same time,
within each burst, participants’ initial RTs are slower than
those near the end of the burst, as participants become
more practiced at the task, representing retest learning
within burst. To account for these simultaneous and com-
peting processes, the BDEM allows for an overall, slow-
timescale improvement in cognitive performance that takes
place across the study, as well as a quicker ‘warm-up’ im-
provement within a burst that starts from the second burst on.
These across-burst and within-burst improvements are mod-
eled through two separate negative exponential functions.
Importantly, long-term (slow-timescale) cognitive change
can then be modeled as changes in the within-burst peak
(asymptotic) performance from one burst to the next. Peak
performance for reaction times corresponds to low values,
and cognitive decline manifests as slowing in peak perfor-
mance (i.e., increase in reaction time values).

While there is improvement (retest learning) within each
burst, some of that improvement is subsequently lost be-
tween bursts. This is shown by the difference in performance
in the beginning of each new burst compared to the peak
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performance of the previous burst. We term this loss of
retest gain ‘forgetting’, as indicated by the upward arrows in
Figure 2. The model also accounts for performance inconsis-
tency by capturing within-person variability in performance.

In our current application, we examine the association be-
tween individual differences in cognitive features extracted
with the BDEM and cognitive status (presence/absence of
MCI at baseline), as a first step towards establishing the
usefulness of this approach for detection of AD/ADRD risk.
We will demonstrate how BDEM can capture six cognitive
markers at once: peak performance, change in peak per-
formance (long-term change), forgetting between bursts,
learning rate across the study, learning rate within bursts,
and within-person variability in performance; all using data
from the EAS. Mathematical details of the BDEM approach
are provided in the Appendix.

To demonstrate the usefulness of the BDEM approach,
we first did a simple analysis based on difference scores
to explore the data. As most people had only two bursts of
data, we focused on assessing the performance changes
between Burst 1 and Burst 2. We computed the average
reaction times for each participant in both bursts and then
determined the change in their performance by calculating
a difference score (Burst 2 minus Burst 1). Our findings re-
vealed an average improvement of 0.14 seconds in reaction
times (M = —0.14, with a 95% Cl of [-0.18, —0.10]). This
improvement was statistically significant, as indicated by a ¢
test (t = —6.41, df = 229, p = 8.38e — 10), suggesting that
participants generally became faster at the task over the
course of a year. Since it is unlikely that our elderly partici-
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Fig. 3. Model fit to participant-level task data. Each of the six panels presents data from a different participant from the Einstein Aging Study with varying number of bursts.

Dots are daily response time aggregates and model fit is shown as a solid line.

pants on average would improve in terms of their processing
speed in approximately a year (which is the typical time dif-
ference between the two bursts), these results highlight the
importance of accounting for retest learning effects. Later
analysis with the BDEM shows that in fact there is a credible
decline in processing speed across the year when retest
learning effects are statistically unconfounded.

Results

Data analysis scripts are available on OSF (osf.io/v3dnc).
To quantify model fit, we calculated the R? statistic, which
captures the proportion of variance in RTs explained by our
model. R? was 0.85, indicating a very good fit of the BDEM
for the Symbol Search data. For a visual illustration of model
fit, we plotted model-predicted trajectories over the data
points, for every person. This is illustrated for six participants,
with varying number of bursts, in Figure 3. As can be seen,
the curves generated by the model closely resemble key
aspects of individual-level data, including (1) alignment of
the exponential curve’s height with the observed initial data
points, (2) convergence of the exponential curve’s asymptote
with performance near the end of each burst, and (3) a
pattern of change in performance across observations that
exhibits an exponential shape.

Group-level descriptions. Group-level summaries for the
Symbol Search task are shown in Table 1 in terms of
means and corresponding 95% credible intervals (Cl). In
the Bayesian framework, 95% credible intervals capture a
range in which a parameter estimate falls with 95% prob-
ability, quantifying the uncertainty around the parameter
estimate. For every cognitive marker, two descriptions are
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shown: the population mean across all participants, and
the population standard deviation (SD), which captures the
magnitude of individual differences in the given marker. Ta-
ble 1 shows that on average the peak performance RT was
2.59 s, with considerable heterogeneity across participants
(M = 0.86). Change in peak performance was positive
on average, around 0.07 s per year (M = 0.07, with 95%
CI [0.01, 0.13] not containing 0), representing a general
decline in performance across bursts (slower RTs). How-
ever, there was inter-individual variability with regard to peak
performance change as well (M = 0.21).

There was a considerable amount of forgetting between
bursts on average (M = 0.48), with substantial individual
differences in this feature (M = 0.28): some participants
forgot very little between burst, whereas for others the effect
of forgetting was as large as 1 s. Learning rates across
the whole study and within burst were similar (M = 0.41
and M = 0.49, respectively), with some inter-individual
variability in both. Finally, the performance inconsistency
(within-person variability) was 0.67 s on average, also with
considerable heterogeneity (M = 0.45). In the next sub-
section, we discuss and test possible exogenous sources of
individual differences in our digital cognitive markers.

Associations between cognitive markers and person-
-level predictors of the Symbol Search task. Individual
differences in these six cognitive markers might be mean-
ingfully linked to other person-level characteristics, such as
mild cognitive impairment. We tested these associations
by regressing our cognitive markers on a set of predictors:
age, MCI status, sex (with male as reference), education
(in years), race (with White as reference) and ethnicity (with

sites.psu.edu/zitaoravecz | April 17,2025 | 5


osf.io/v3dnc

Table 1. Group level results. Posterior means and the bound-
aries of 95% credible intervals of group-level mean and stan-
dard deviation (SD) of the six key cognitive markers based on
data from the Symbol Search task.

Group-level cognitive marker Mean Quantiles
25% 97.5%
Mean peak performance 2.59 2.40 2.79
SD of peak performance 0.86 0.77 0.95
Mean change in peak performance 0.07 0.01 0.13
SD of change in peak performance 0.21 0.19 0.24
Mean forgetting between bursts 0.48 0.40 0.58
SD of forgetting between bursts 0.28 0.25 0.32
Mean learning rate across bursts 0.41 0.32 0.50
SD of learning across bursts 0.28 0.23 0.33
Mean learning rate within bursts 0.49 0.39 0.60
SD of learning within bursts 0.19 0.15 0.23
Mean within-person variability 0.67 0.57 0.78
SD of within-person variability 0.45 0.41 0.50

Note: SD = standard deviation

Table 2. Summary of selected results on associations between
cognitive markers and person-level predictors for the Symbol
Search task. Posterior means and the boundaries of 95%
credible intervals of the regression coefficients linking the
cognitive markers to the person-level predictors.

Cognitive marker Person-level Mean Quantiles
predictor 25% 97.5%
Peak performance MCI status 0.82 0.60 1.06
Age 0.12 0.01 0.22
Education -0.17  -0.28 -0.06
Within-person variability MCI status 0.31 0.20 0.43
Age 0.02 -0.04 0.07
Education -0.09 -0.14 -0.03
Forgetting between bursts ~ MCI status 0.22 0.11 0.33
Age -0.02 -0.06 0.02
Learning rate within burst MCI status -0.10  -0.19 -0.02
Age -0.01  -0.05 0.03
Sex -0.12  -0.22 -0.03

non-Hispanic as reference). These regression parameters
were all embedded in a single BDEM for a one-step analysis,
therefore all reported results are partial regression coeffi-
cients, meaning they summarize the effect of one conditional
on all the others.

Selected results based on Symbol Search data are dis-
played in Table 2. The table shows all regression coefficients
for which the 95% credibility interval did not contain 0 (i.e.,
credible associations) and some associations related to age.
All results are shown in the Appendix.

Individual differences in processing speed peak perfor-
mance — a cognitive marker that quantifies performance
disentangled from retest effects—were credibly related to
MCI status (M = 0.82), age (M = 0.12), and educa-
tion (M = —0.17). As expected, both older participants
and participants with MCI had slower peak RTs — however,
the standardized effect size (normalized using the group-
level SD shown in Table 1) was comparatively large for
MCI status (0.82 seconds, which is 0.82/0.86 = 0.95 in
terms of standardized effect size based on the group-level
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peak performance SD shown in Table 1) but small for age
(0.12/4.98 = 0.02 seconds per year or in standardized effect
size 0.12/0.86 = 0.14). Finally, participants with more years
of education tended to have faster RTs.

In addition to being able to disentangle long-term cogni-
tive change in peak performance from retest effects, with the
BDEM we may also capture individual differences in learn-
ing and forgetting processes and we may attempt to explain
these individual differences with exogenous variables. In
our data, the amount of forgetting between bursts was larger
for participants with MCI status — by around 0.22 s on aver-
age. Given the group-level SD of 0.28 (0.22/0.28 = 0.79),
this is a large effect. As can also be seen from Table 2,
the predictive link between age and forgetting was practi-
cally 0 (M = —0.02, with a very narrow 95% CI around
it: [—0.06,0.02]). It is exactly this differential predictive
link—with MCI but not age—that makes this novel cognitive
marker a promising candidate for an early, specific marker
of cognitive impairment not due to normative aging. Simi-
larly, the learning rate within a burst was also only related
to MCI status (M = —0.10) and not to age (M = —0.01),
where participants with MCI showed slower rates of learning
(@ medium sized effect, 0.10/0.19 = 0.53). Sex was also
related to learning rate, with female participants showing
slower learning within bursts (M = —0.12). The BDEM cap-
tured individual differences not only in learning processes
but also in performance inconsistency. Interestingly, per-
formance inconsistency (within-person variability) was also
selectively linked only to MCI status (M = 0.31) and not to
age (M = 0.02). Participants with more years of education
also showed less performance inconsistency (M = —0.09).

The difference between participants with and without MCI
is further highlighted in Figure 4. As can be seen, partici-
pants with MCI (dashed line) had slower peak performance
RTs (higher RT values). Looking at the distance between
an asymptote (peak performance) and the top of the next
exponential curve, it is also apparent that participants with
MCI had larger rates of forgetting. The increased variability
in performance is shown by the shading around the pre-
dicted curves. Finally, the slower learning rate for the MCI
group meant that it took longer for them to reach their peak
(asymptotic) performance.

A conceptual replication: Associations between cogni-
tive markers and person-level predictors in the Color
Shapes task. To demonstrate the robustness of the above
findings, we replicated the analysis on RT data from the
same study using another cognitive task (Color Shapes) that
captured a different cognitive domain. The Color Shapes
task assesses working memory, specifically short-term mem-
ory binding. Changes in working memory capacity to build,
maintain, and rapidly update arbitrary bindings, such as
features (e.g., color) to items (e.g., shapes), could be early
markers of ADRD onset (Parra et al., 2022).

Results are shown in Table 3, with links that were not
replicated typeset in italics (compared to Symbol Search

Oravecz etal.



5.0
=== MCI
| —— Non-MClI

4.5 A
“w
Q

4.0 4
£
-+
Q T
-
8_ 351 © increased \ slower

=9 forgettin -

8 o = 9 9 learning
:: =£

3.0 A v o

2% L
o
increased variability
25 4 in performance
0 25 50 75 100 125 150 175

Measurement occasion

Fig. 4. Visualization of model-predicted group differences. Model-predicted trajectory estimates for participants with and without MCI, with the four key credible differences
between the groups highlighted: Participants with MCI had worse peak performance, increased forgetting, increased variability in performance, and slower learning within bursts.

results shown in Table 2), with two new links in the bot-
tom two rows. As can be seen, the associations between
peak performance and age (lower with age) and MCI (lower
with positive status) were replicated, but we did not find a
credible association between years of education and peak
performance on this task. Importantly, we replicated the key
findings regarding MCI status being selectively associated
with within-person variability and forgetting between bursts,
while age was again not credibly linked to either of these
two. Lastly, the credible links between learning rate and MCI
status and sex did not replicate, but two new links emerged:
participants with more years of education tended to have
less forgetting between bursts and learning rate was slightly
increased with age.

Discussion

In the present study, we showed how to dissociate retest ef-
fects from longer-term cognitive changes in high-frequency
cognitive assessment designs with the BDEM. Building on
previous evidence that the BDEM precisely captures pat-
terns of retest learning and levels of peak (‘best’) perfor-
mance achieved within a measurement burst (Oravecz et
al., 2022), here we showed that this model can be extended
to capture performance dynamics that occur across multiple
(and possibly irregularly spaced) measurement bursts over
time. This framework allowed us to extract individual-specific
cognitive markers of retest learning that were meaningfully
linked to person-level characteristics. Specifically, the in-
clusion of a forgetting parameter allowed us to capture the
degree of retest gain that is lost between bursts. Interindi-
vidual differences in the forgetting parameter in older adults
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Table 3. Summary of selected results on associations between
cognitive markers and person-level predictors for the Color
Shapes task. Posterior means and the boundaries of 95%
credible intervals of the regression coefficients linking the
cognitive markers to the person-level predictors.

Cognitive marker Person-level Mean Quantiles
predictor 25% 97.5%
Peak performance MCI status 0.20 0.05 0.35
Age 0.11 0.05 0.18
Education 0.01 -0.06 0.08
Within-person variability MCI status 0.15 0.06 0.24
Age 0.02 -0.02 0.06
Education -0.07  -0.11 -0.02
Forgetting between bursts MCI status 0.17 0.07 0.28
Age 0.02 -0.03 0.06
Learning rate within burst MCI status 0.06 -0.04 0.17
Age -0.01  -0.05 0.04
Sex 0.00 -0.09 0.09
Forgetting between bursts Education -0.05 -0.10 -0.01
Learning rate across bursts ~ Age 0.06 0.01 0.10

were selectively predictive for mild cognitive impairment, but
not age, indicating that this parameter may be sensitive to
cognitive phenotypic information relevant to AD/ADRD risk
(i.e., amnestic patterns).

Mild cognitive impairment status was also credibly asso-
ciated with three other features extracted with the BDEM:
peak performance, learning rate, and within-person variabil-
ity, while age was only associated with peak performance.
However, neither MCI status nor age were meaningfully re-
lated to long-term changes in cognitive peak performance
in the current study. This further highlights the importance
of capturing the subtle latent processes of cognitive change.
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We propose that parameters of the BDEM should be studied
for their use as novel cognitive markers of subtle cognitive
change during AD/ADRD-related pathological processes.
It is furthermore important to highlight that, while we inter-
pret these parameters as reflecting learning and memory
processes (including the forgetting parameter), we derive es-
timates of these parameters from RT data collected during
a task designed to assess processing speed/attention. Use
of the BDEM in this way may open new avenues for assess-
ing multiple domains/dimensions of cognitive health using
a single-task paradigm, which would improve efficiency of
cognitive assessment and reduce participant/patient burden
in future trials.

The conceptual replication revealed similar key associa-
tions between these cognitive markers and MCI status in the
context of a working memory task. Specifically, the same
participants with MCI status also tended to have lower peak
performance, higher performance inconsistency and higher
levels of forgetting on the Color Shapes task as well. While
these findings are based on the RT measure of this task, as
opposed to the more conventionally used accuracy-based
measure (Parra et al., 2010), the BDEM is not limited to RT
data. In fact, previous work (Oravecz et al., 2022) showed
associations between age and BDEM features based on
an error distance measure of another working memory task
(Dot Memory). Future work could also explore simultaneous
analysis of RT and accuracy data by combining the BDEM
with a hierarchical diffusion modeling approach (Vandeker-
ckhove et al., 2011).

A limitation of our study concerning the results related
to MCI status is that we focused solely on baseline, with-
out considering possible changes in MCI status over time.
MCI classification serves to characterize dementia risk but
is imperfect. Indeed, some individuals classified as MCI
at baseline may ‘revert’ to non-MCI status at follow-up as-
sessments. This reversion could stem from various factors,
including measurement error or the alleviation of transient
conditions (e.g., medication side effects, dehydration or nu-
tritional deficiencies, stress) contributing to cognitive decline.
Reversion from MCI baseline status could also be driven
by retest-related performance boosts that result in individu-
als with underlying impairment performing above the MCI
threshold with repeated testing at follow-up, potentially lead-
ing to misclassification. Conversely, individuals not initially
identified as MCI at baseline may later meet the classifi-
cation threshold for MCI during subsequent assessments,
indicating incident MCI. As the EAS is ongoing, with partic-
ipants accruing several bursts of measurements over the
years, we anticipate an increase in incident MClI rates, pro-
viding opportunities to examine the predictive value of our
novel digital markers for incident MCI with greater statistical
power.

A possible limitation of our approach is the measure-
ment variability that stems from environmental factors of
the participants’ natural environments (see, e.g., Benson et
al., 2023; Zhaoyang et al., 2022; Hyun et al., 2019, 2024).
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However, we emphasize that by choosing high-frequency
ambulatory measurement designs (e.g., the measurement
burst design in the current study), in which each individual
performs many repeated measures over the course of two
weeks, we rely on distributing testing across a wide range
of contexts that should make our model implied outcomes
robust to the testing context. Environmental factors in this
framework are considered as stochastic sources of mea-
surement error. Also, individual differences in performance
variability are directly modeled through BDEM parameters
(e.g., intra-individual variability and retest learning), and
combined with the dense assessments across the different
context can in fact highlight individual differences in contex-
tual response. This approach also ensures that occasional
extreme measurement occasions (e.g., due to distraction or
interruptions) do not exert undue influence on the outcomes.

Computational modeling of high-frequency cognitive as-
sessments, such as those conducted through smartphone-
based testing, provides advantages over conventional test-
ing methods by capturing retest effects and learning trends,
and by estimating cognitive decline independently of prac-
tice effects. This is in contrast with traditional neuropsycho-
logical testing approaches, which typically capture only a
snapshot of an individual’s performance at a specific mo-
ment and elide natural fluctuations in performance that occur
in everyday life. Consequently, these approaches may be
insensitive to subtle cognitive changes marked by variability
in performance, retest trends, or long-term forgetting (see,
e.g., Mortamais et al., 2017; Rentz et al., 2013).

Previous studies (Elbin et al., 2023; Thompson et al.,
2022; Wrzus & Neubauer, 2023) suggest that ambulatory
high-frequency assessments showcased in our study fit well
with work done in a neuropsychological or memory clinic.
These tests provide sensitive and ecologically valid infor-
mation that complements the metrics that clinicians would
traditionally have in their clinical portfolio. However, future
work should address designing clinical grade protocols and
normative ranges of change for clinically informative out-
comes. Recent developments of open-source data collec-
tion infrastructure (Hakun et al., 2024) make our approach
feasible for such future work.

Effective planning and evaluation of preventive interven-
tions for cognitive impairment necessitate assessments ca-
pable of detecting subtle markers of susceptibility and moni-
toring them over time. While comprehensive neuropsycho-
logical exams are the current gold standard for detecting
cognitive impairment, they are lengthy and often require
in-person administration, limiting their scalability for use as
endpoints in research and clinical trials. Our study demon-
strates that mobile cognitive testing combined with Bayesian
modeling can yield novel cognitive markers capturing learn-
ing and performance inconsistency, offering a promising
approach for long-term monitoring in clinical settings and
therapeutic trials. Besides being able to disentangle retest
effects from longer-term cognitive change, a major advan-
tage of the BDEM approach is the ability to quantify directly
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interpretable latent cognitive features that could be trans-
lated for future use in long-term monitoring in standard-of-
care settings or therapeutic targets in clinical trials. In fact,
the presented approach is designed to supply clinically use-
ful information for every individual, in terms of personalized
probabilities of impairment and decline based on Bayesian
posterior probability distributions of the cognitive markers.
Thus, we are optimistic that learning model-based computa-
tional phenotypes can streamline therapeutic discovery.

To further validate the practical utility of these digital cog-
nitive markers, we propose exploring correlations with neu-
roimaging and blood-based biomarkers of neurodegenera-
tion. For example, investigating how rates of forgetting relate
to measures of cortical integrity from MRI or connectivity
from fMRI could validate these markers as indicators of brain
health (e.g., neuroimaging and blood-based/plasma-based
biomarkers, see Davatzikos et al., 2011; Moradi et al., 2015).
Similarly, examining associations between blood and plasma
biomarkers and cognitive markers derived from the BDEM
could offer a comprehensive view of neural health that is
linked to specific and theoretically interpretable features
of cognitive function, such as learning, forgetting, variabil-
ity, and peak or asymptotic performance (Beydoun et al.,
2023). Overall, this approach would offer a triangulated,
multi-modal perspective of brain health, delivering a compre-
hensive overview of neural well-being and cognitive status.

References

Baker, J. E., Lim, Y. Y., Pietrzak, R. H., Hassenstab, J.,
Snyder, P. J., Masters, C. L., & Maruff, P. (2016). Cog-
nitive impairment and decline in cognitively normal older
adults with high amyloid-/3: A meta-analysis. Alzheimer’s
& Dementia, 6, 108—121.

Benson, L., Fleming, A. R., & Hakun, J. G. (2023). Some-
times you just can’t: within-person variation in working
memory capacity moderates negative affect reactivity to
stressor exposure. Cognition and Emotion, 37(8), 1357—
1367.

Beydoun, M. A., Noren Hooten, N., Beydoun, H. A., Weiss,
J., Maldonado, A. I., Katzel, L. I., & Waldstein, S. R.
(2023). Plasma neurofilament light and brain volumetric
outcomes among middle-aged urban adults. Neurobiol-
ogy of Aging, 129, 28—40.

Broitman, A., Kahana, M., & Healey, K. (2019). Modeling
retest effects in a longitudinal measurement burst study
of memory. Computational Brain & Behavior, 3, 1-13.

Calamia, M., Markon, K., & Tranel, D. (2012). Scoring
higher the second time around: Meta-analyses of practice
effects in neuropsychological assessment. The Clinical
Neuropsychologist, 26(4), 543-570.

Carpenter, B., Gelman, A., Hoffman, M. D., Lee, D.,
Goodrich, B., Betancourt, M., ... Riddell, A. (2017).

Oravecz etal. IMPEC lab |

Pennsylvania State University |

Stan: A probabilistic programming language. Journal
of statistical software, 76(1).

Cerino, E., Katz, M., Wang, C., Qin, J., Gao, Q., Hyun, J., &
Sliwinski, M. (2021). Variability in cognitive performance
on mobile devices is sensitive to mild cognitive impair-
ment: Results from the einstein aging study. Frontiers in
Digital Health, 3.

Davatzikos, C., Bhatt, P., Shaw, L. M., Batmanghelich, K. N.,
& Trojanowski, J. Q. (2011). Prediction of MCI to AD con-
version, via MRI, CSF biomarkers, and pattern classifica-
tion. Neurobiology of Aging, 32(12), 2322.e19-2322.e27.

Elbin, R., Durfee, K., Womble, M., Dollar, C., Elbich, D., &
Hakun, J. (2023). Compliance rates and symptom exacer-
bation for the mobile neurocognitive health (mnch) project
in adolescents and adults with concussion. Medicine &
Science in Sports & Exercise, 55, 495-495.

Gelman, A., Carlin, J., Stern, H., Dunson, D., Vehtari, A., &
Rubin, D. (2013). Bayesian data analysis, third edition.
Taylor & Francis.

Gelman, A., & Hill, J. (2007). Data analysis using regression
and multilevel/hierarchical models. Cambridge University
Press.

Goldberg, T. E., Harvey, P. D., Wesnes, K. A., Snyder,
P. J., & Schneider, L. S. (2015). Practice effects due
to serial cognitive assessment: Implications for preclin-
ical Alzheimer's disease randomized controlled trials.
Alzheimer’s & Dementia: Diagnosis, Assessment & Dis-
ease Monitoring, 1, 103—111.

Hadjichrysanthou, C., Evans, S., Bajaj, S., Siakallis, L. C.,
McRae-McKee, K., de Wolf, F., & Anderson, R. M. (2020).
The dynamics of biomarkers across the clinical spectrum
of Alzheimer’s disease. Alzheimer’s Research & Therapy,
12.

Hakun, J. G., Elbich, D. B., Roque, N. A., Yabiku, S. T,
& Sliwinski, M. (2024). Mobile monitoring of cognitive
change (m2c2): High-frequency assessments and proto-
col reporting guidelines. PsyArXiv.

Hall, C. B., Lipton, R. B., Sliwinski, M., & Stewart, W. F.
(2000). A change-point model for estimating the onset
of cognitive decline in preclinical Alzheimer’s disease.
Statistics in Medicine, 19, 1555—1566.

Han, S. D., Nguyen, C. P, Stricker, N. H., & Nation, D. A.
(2017). Detectable neuropsychological differences in
early preclinical Alzheimer’s disease: A meta-analysis.
Neuropsychology Review, 27(4), 305-325.

Hassenstab, J., Ruvolo, D., Jasielec, M., Xiong, C., Grant,
E., & Morris, J. C. (2015). Absence of practice effects
in preclinical Alzheimer’s disease. Neuropsychology, 29,
940-948.

sites.psu.edu/zitaoravecz | April 17,2025 | 9



Helm, J. L., Castro-Schilo, L., & Oravecz, Z. (2016).
Bayesian versus maximum likelihood estimation of
multitrait—-multimethod confirmatory factor models. Struc-
tural Equation Modeling: A Multidisciplinary Journal,
24(1), 17-30.

Hoffman, L., Hofer, S. M., & Sliwinski, M. J. (2011). On the
confounds among retest gains and age-cohort differences
in the estimation of within-person change in longitudinal
studies: A simulation study. Psychology and Aging, 26,
778-791.

Hyun, J., Lovasi, G. S., Katz, M. J., Derby, C. A., Lipton,
R. B., & Sliwinski, M. J. (2024). Perceived but not objective
measures of neighborhood safety and food environments
are associated with longitudinal changes in processing
speed among urban older adults. BMC Geriatrics, 24(1),
551.

Hyun, J., Sliwinski, M. J., & Smyth, J. M. (2019). Waking
up on the wrong side of the bed: The effects of stress
anticipation on working memory in daily life. The Journals
of Gerontology: Series B, 74(1), 38—46.

Jak, A. J., Bondi, M. W., Delano-Wood, L., Wierenga, C.,
Corey-Bloom, J., Salmon, D. P, & Delis, D. C. (2009).
Quantification of five neuropsychological approaches to
defining mild cognitive impairment. The American Journal
of Geriatric Psychiatry, 17, 368-375.

Lawton, M. P, & Brody, E. M. (1969). Assessment of older
people: Self-maintaining and instrumental activities of
daily living. The Gerontologist, 9(3.1), 179-186.

Lipnicki, D. M., Crawford, J. R., Dutta, R., Thalamuthu, A.,
Kochan, N. A., Andrews, G., ... others (2017). Age-
related cognitive decline and associations with sex, edu-
cation and apolipoprotein E genotype across ethnocultural
groups and geographic regions: a collaborative cohort
study. PLoS Medicine.

MacDonald, S. W, Li, S.-C., & Backman, L. (2009). Neu-
ral underpinnings of within-person variability in cognitive
functioning. Psychology and Aging, 24, 792—-808.

Moore, R. C., Swendsen, J., & Depp, C. A. (2017). Applica-
tions for self-administered mobile cognitive assessments
in clinical research: A systematic review. International
Journal of Methods in Psychiatric Research, 26.

Moradi, E., Pepe, A., Gaser, C., Huttunen, H., & Tohka,
J.  (2015). Machine learning framework for early
MRI-based alzheimer’s conversion prediction in MCI
subjects.  Neurolmage, 104, 398—412. Retrieved
from https://www.sciencedirect.com/science/
article/pii/S1053811914008131 (Retrieved from)

Morrison, G. E., Simone, C. M., Ng, N. F., & Hardy, J. L.
(2015). Reliability and validity of the neurocognitive per-
formance test, a web-based neuropsychological assess-
ment. Frontiers in Psychology, 6.

10 of 12

Mortamais, M., Ash, J. A., Harrison, J., Kaye, J., Kramer, J.,
Randolph, C., ... Ritchie, K. (2017). Detecting cognitive
changes in preclinical Alzheimer’s disease: A review of
its feasibility. Alzheimer’s & Dementia, 13(4), 468—492.

Munoz, E., Sliwinski, M. J., Scott, S. B., & Hofer, S. (2015).
Global perceived stress predicts cognitive change among
older adults. Psychology and Aging, 30(3), 487.

Nicosia, J., Aschenbrenner, A. J., Balota, D. A., Sliwinski,
M. J., Tahan, M., Adams, S., ... others (2023). Unsu-
pervised high-frequency smartphone-based cognitive as-
sessments are reliable, valid, and feasible in older adults
at risk for Alzheimer’s disease. Journal of the International
Neuropsychological Society, 29(5), 459—471.

Oravecz, Z., Harrington, K. D., Hakun, J. G., Katz, M. J.,
Wang, C., Zhaoyang, R., & Sliwinski, M. J. (2022). Ac-
counting for retest effects in cognitive testing with the
bayesian double exponential model via intensive mea-
surement burst designs. Frontiers in Aging Neuroscience,
128.

Parra, M. A., Abrahams, S., Logie, R. H., Méndez, L. G.,
Lopera, F, & Della Sala, S. (2010). Visual short-term
memory binding deficits in familial Alzheimer’s disease.
Brain, 133(9), 2702-2713.

Parra, M. A., Calia, C., Pattan, V., & Della Sala, S. (2022).
Memory markers in the continuum of the Alzheimer’s clin-
ical syndrome. Alzheimer’s Research & Therapy, 14(1),
1-16.

Patzelt, E. H., Hartley, C. A., & Gershman, S. J. (2018).
Computational phenotyping: Using models to understand
individual differences in personality, development, and
mental iliness. Personality Neuroscience, 1.

Rentz, D. M., Parra Rodriguez, M. A., Amariglio, R., Stern,
Y., Sperling, R., & Ferris, S. (2013). Promising develop-
ments in neuropsychological approaches for the detec-
tion of preclinical Alzheimer’s disease: A selective review.
Alzheimer’s Research & Therapy, 5, 58.

Ritchie, K., Ritchie, C. W., Jaffe, K., Skoog, |., & Scarmeas,
N. (2015). Is late-onset Alzheimer’s disease really a dis-
ease of midlife? Alzheimer’s and Dementia: Translational
Research and Clinical Interventions, 1(2), 122—130.

Salthouse, T. A. (2009). When does age-related cognitive
decline begin? Neurobiology of Aging, 30, 507-514.

Salthouse, T. A. (2010). Influence of age on practice effects
in longitudinal neurocognitive change. Neuropsychology,
24, 563-572.

Singh, S., Strong, R., Xu, ., Fonseca, L., Hawks, Z., Grin-
spoon, E., & Germine, L. (2023). Ecological momentary
assessment of cognition in clinical and community sam-
ples: Reliability and validity study. Journal of Medical
Internet Research, 25.

Oravecz etal.


https://www.sciencedirect.com/science/article/pii/S1053811914008131
https://www.sciencedirect.com/science/article/pii/S1053811914008131

Sliwinski, M. J. (2008). Measurement-burst designs for
social health research. Social and Personality Psychology
Compass, 2.

Sperling, R. A., Aisen, P. S., Beckett, L. A., Bennett, D. A,,
Craft, S., Fagan, A. M., ... others (2011). Toward
defining the preclinical stages of Alzheimer’s disease:
Recommendations from the national institute on aging-
Alzheimer’s association workgroups on diagnostic guide-
lines for Alzheimer’s disease. Alzheimer’s & Dementia,
7(3), 280—292.

Stan Development Team. (2023). RStan: the R interface to
Stan. (R package version 2.26.22)

Thompson, L., Harrington, K., Roque, N., Strenger, J., Cor-
reia, S., Jones, R., ... Sliwinski, M. (2022). A highly
feasible, reliable, and fully remote protocol for mobile app-
based cognitive assessment in cognitively healthy older
adults. Alzheimer's & Dementia: Diagnosis, Assessment
& Disease Monitoring, 14.

Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2011).
Hierarchical diffusion models for two-choice response
times. Psychological Methods, 16, 44—62.

Verlinden, V. J., van der Geest, J. N., de Bruijn, R. F,, Hof-
man, A., Koudstaal, P. J., & [kram, M. A. (2015). Tra-
jectories of decline in cognition and daily functioning in
preclinical dementia. Alzheimer’s & Dementia, 12.

Wilson, R. S, Li, Y., Bienias, J. L., & Bennett, D. A. (2006).
Cognitive decline in old age: Separating retest effects
from the effects of growing older. Psychology and Aging,
21, 774-789.

Wrzus, C., & Neubauer, A. B. (2023). Ecological momentary
assessment: A meta-analysis on designs, samples, and
compliance across research fields. Assessment, 30(3),
825-846.

Young, C. B., Mormino, E. C., Poston, K. L., Johnson, K. A.,
Rentz, D. M., Sperling, R. A., & Papp, K. V. (2023). Com-
puterized cognitive practice effects in relation to amyloid
and tau in preclinical Alzheimer’s disease: Results from
a multi-site cohort. Alzheimer’s & Dementia: Diagnosis,
Assessment & Disease Monitoring, 15.

Zelazo, P. D., Anderson, J. E., Richler, J., Wallner-Allen, K.,
Beaumont, J. L., Conway, K. P, ... Weintraub, S. (2014).
NIH toolbox Cognition Battery (CB): validation of executive
function measures in adults. Journal of the International
Neuropsychological Society, 20(6), 620—629.

Zhaoyang, R., Harrington, K. D., Scott, S. B., Graham-
Engeland, J. E., & Sliwinski, M. J. (2022). Daily social
interactions and momentary loneliness: The role of trait
loneliness and neuroticism. The Journals of Gerontology:
Series B, 77(10), 1791-1802.

Oravecz etal. IMPEC lab |

Pennsylvania State University |

Appendix

Mathematical formulation of the Bayesian double expo-
nential model. Mathematically, the Bayesian double expo-
nential model is specified as:

RTy; = a; + A By + gie” "M 4 I(Bn,,,;>1)g;ke_7‘:T” + e,
(1]

where RTj; stands for person ¢'s RT at measurement occa-
sion t. The latent processes generating these RTs are
modeled through key parameters that have meaningful
substantive interpretations. Specifically, a; denotes per-
son i’s asymptotic or peak performance, and A; captures
the person-specific linear change in this peak performance
across bursts, with B;; quantifying the burst start time (in
years). This change in peak performance is disentangled
from learning processes via the two exponential function
in Equation 1. The first exponential function captures the
learning process across the whole study, with My; denot-
ing measurement time nested in study, r; capturing the
person-specific learning rate across study and g; capturing
the person-specific gain across study. The learning rate
parameter quantifies the slope of the exponential, while the
gain parameter captures its height. From the second burst
on, denoted as I(p,,,>1), where Bny; is the burst number
for person i at measurement occasion ¢, we also allow for
a within-burst ‘warm-up’ learning process to take place, pa-
rameterized through person-specific learning rate in burst,
ry, and person-specific gain in burst g}, with T; captur-
ing the measurement time nested in burst. Note, however,
in our Bayesian implementation of the exponential model
we do not consider the within-burst gain per se, but intro-
duce a reparameterization and instead capture ‘forgetting’,
¢; for each person i, as a new parameter. It is derived
as ¢; = A; + gre "i. Finally, we allow for performance
inconsistency via an error term e;; around the exponen-
tial curve that follows a zero centered normal distribution:
er; ~ N(0,0;), with person-specific parameter standard de-
viation o; quantifying the amount of within-person variability.

The multilevel Bayesian implementation of the dou-
ble negative exponential model. All six cognitive features
in Equation 1 were allowed to differ between participants.
Then the model was cast in a multilevel framework for in-
creased estimation accuracy of the parameters and prin-
cipled testing of group-level trends. This meant that all
person-specific parameters (representing the cognitive fea-
tures) were pooled together via population (group-level) dis-
tributions, with means regressed on predictors. For ex-
ample, the person-specific peak performances a; were as-
sumed to follow a group-level distribution that was defined as
a; ~ N(x;8,,04), with the mean of the distribution decom-
posed into a product of person-specific predictor variables
x; and corresponding regression coefficients 3, with o, the
group-level standard deviation. All other features followed
the same formulation.
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This model was implemented in a Bayesian statistical
framework (Gelman et al., 2013). The Bayesian framework
offers estimation techniques that work well for complex, non-
linear, multilevel models, in terms of higher convergence
rates and admissible solutions for parameter estimates (e.g.,
no negative variance estimates, see Helm et al., 2016).
Moreover, our multilevel Bayesian approach (Gelman & Hill,
2007) allows for simultaneous (one-step) estimation of cog-
nitive features and regression coefficients linking them to
predictors.

In the Bayesian framework every model parameter must
have a prior distribution, which is combined with a likelihood
function (based on the selected cognitive process model and
using Bayes’ rule) to yield the parameter’s posterior probabil-
ity distribution. Weakly informative priors were set on hyper-
parameters, which did not bias the estimation but focused
the estimation range to plausible values (i.e., by assigning
low probabilities to unreasonably high values). For example,
the regression coefficient linking peak performance to age
was set to a normally distributed prior with mean 0 and stan-
dard deviation 10, (a5 ~ N(0,10). Since age entered
the model as a standardized predictor, we would not expect
this regression coefficient to take values above 10 in either
direction (with its most likely range being between -4 and
+4), and our prior reflects this knowledge.

The Bayesian model fitting for the chosen exponen-
tial model was done in Stan, which is a freely avail-
able “state-of-the-art platform for statistical modeling and
high-performance statistical computation” (Carpenter et al.,
2017), called from R via rstan (Stan Development Team,
2023). We ran four chains with 6,000 iterations each, dis-
carding 1,000 of each as warm-up, to obtain a posterior
sample size of 20,000 for every model parameter. Con-
vergence was checked by calculating the potential scale
reduction factor (Gelman et al., 2013) R and visual inspec-
tion of trace plots — no convergence problems were found.
We also checked the quality of the samples via calculating
effective sample sizes (number of independent pieces of
information in the posterior sample) which was sufficient for
every parameter (over 1,000 for 98.5% of the parameters
and never under 60).

Additional results. Table 4 shows full results on associa-

tions between cognitive markers and person-level predictors
for the Symbol Search task.
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Table 4. Posterior means and the boundaries of 95% credible
intervals of the regression coefficients linking the cognitive
markers to the person-level predictors.

Cognitive marker  Person-level predictor Mean Quantiles
25% 97.5%
Forgetting Intercept 0.48 0.40 0.58
Age -0.02  -0.06 0.02
MCI status 0.22 0.11 0.33
Sex -0.02 -0.12 0.07
Years of Education 0.00 -0.04 0.05
Race Black -0.01  -0.11 0.09
Ethnic Hispanic -0.04 -0.19 0.11
Learning rate Intercept 0.49 0.39 0.60
within bursts Age -0.01 -0.05 0.03
MCI status -0.10  -0.19 -0.02
Sex -0.12  -0.22 -0.08
Years of Education -0.00 -0.05 0.04
Race Black 0.05 -0.04 0.14
Ethnic Hispanic -0.04 -0.17 0.10
Learning rate Intercept 0.41 0.32 0.50
across study Age 0.00 -0.04 0.05
MCI status -0.01  -0.11 0.09
Sex 0.05 -0.04 0.14
Years of Education -0.02 -0.06 0.03
Race Black -0.02  -0.11 0.08
Ethnic Hispanic 0.01  -0.13 0.15
Peak performance  Intercept 2.59 2.40 2.79
Age 0.12 0.01 0.22
MCI status 0.82 0.60 1.06
Sex 0.00 -0.21 0.22
Years of Education -0.17  -0.28 -0.06
Race Black 0.09 -0.13 0.32
Ethnic Hispanic -0.01 -0.33 0.31
Change in peak Intercept 0.07 0.01 0.13
performance Age 0.01  -0.02 0.04
MCI status 0.00 -0.07 0.08
Sex -0.06 -0.13 0.01
Years of Education -0.01  -0.04 0.02
Race Black -0.03  -0.10 0.03
Ethnic Hispanic 0.02 -0.09 0.12
Within-person Intercept 0.67 0.57 0.78
variability Age 0.02 -0.04 0.07
MCI status 0.31 0.20 0.43
Sex -0.02 -0.18 0.09
Years of Education -0.09 -0.14 -0.03
Race Black 0.07 -0.05 0.19
Ethnic Hispanic -0.08 -0.25 0.08
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