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Repeated assessments of cognitive performance yield rich data from which we can extract markers of cognitive performance. Computational
coghnitive process models are often fit to repeated cognitive assessments to quantify individual differences in terms of substantively mean-
ingful cognitive markers and link them to other person-level variables. Most studies stop at this point, and do not test whether these cognitive
markers have utility for predicting some meaningful outcomes. Here, we demonstrate a partially observable predictor modeling approach
that can fill this gap. Using this approach, we can simultaneously extract cognitive markers from repeated assessment data and use these
together with demographic covariates for predictive modeling of a clinically interesting outcome in a Bayesian multilevel modeling frame-
work. We describe this approach by constructing a predictive process model in which features of learning are combined with demographic
variables to predict mild cognitive impairment, and demonstrate it using data from the Einstein Aging Study.
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Digital technology has enabled us to collect large volumes of cog-
nitive performance data from an individual with relative ease. For
example, the well-known Project Implicit data set now contains
data obtained from 2.7 million individuals for one of the dozens
of cognitive performance tests (Stier, Sajjadi, Karimi, Bettencourt,
& Berman, 2024). In other instances, people have shown great
willingness to play ‘brain games’ on smartphones in daily life set-
tings — that is, to complete brief cognitive assessments in their
natural environment repeatedly during the day, for several days
(Thompson et al., 2022). Such high-frequency performance data
are generated by multiple underlying processes related to learning
and variability in cognitive performance on various timescales (e.g.,
day-to-day, week-to-week). Computational cognitive psychometric
modeling (Batchelder, 2010) is needed to disentangle these latent
processes, and explore individual differences therein.

Over the past decades, numerous computational cognitive pro-
cess models that capture the latent processes underlying observed
scores of cognitive tasks have been developed. These models
define cognitive parameters—unobservable or ‘latent’ underlying
features of behavior—that can be inferred from behavioral data to
understand participant performance and explain variability within
and between participants. Among the more popular models are the
family of drift diffusion models (Ratcliff & McKoon, 2008; Vandeker-
ckhove, Tuerlinckx, & Lee, 2011) that separate processing speed
from metacognitive factors in reaction time tasks; the expectancy-
valence model (Wetzels, Vandekerckhove, Tuerlinckx, & Wagen-
makers, 2010) that captures risk attitudes in decision making;
Rescorla-Wagner models (Browning, Behrens, Jocham, O’Reilly,
& Bishop, 2015) that quantify processes in Pavlovian learning;
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multinomial processing tree models that quantify abilities and bi-
ases in behaviors leading to discrete outcomes (Erdfelder et al.,
2009); and retest learning models that disentangle multi-timescale
processes in repeated testing (Oravecz et al., 2022). The com-
mon element among these models is that they propose concrete
data-generating mechanisms underlying the observed behaviors
during a cognitive task. As quantitative models, they use latent
variables (i.e., cognitive parameters or markers) to capture the
most important characteristics of human decision making, learning,
and memory.

Untangling the sources of individual differences in these la-
tent cognitive features is a major focus of research in cognitive
science. Cognitive markers have been linked to person-level char-
acteristics such as age (Thapar, Ratcliff, & McKoon, 2003), anxiety
(Charpentier, Aylward, Roiser, & Robinson, 2016), sex (Oravecz,
Faust, & Batchelder, 2014), cognitive impairment (Oravecz et al.,
2025), among others. However, while these studies have col-
lectively established the validity of various cognitive markers to
describe meaningful individual differences, and yielded insights
that are not accessible from simple summary statistics (Yechiam,
Busemeyer, Stout, & Bechara, 2005), they often do not test whether
particular cognitive markers are individually predictive of meaning-
ful criteria — for example, clinical outcomes such as a diagnosis of
mild cognitive impairment (MCI) or Alzheimer’s dementia (AD).

It is common practice to evaluate how much variance in model
parameters is explained by a clinically meaningful outcome — using
the clinical outcome as a predictor and parameters as the criterion
(e.g., Hernaus, Gold, Waltz, & Frank, 2018; Ratcliff, Scharre, &
McKoon, 2022).! In many interesting cases, however, it is useful
to use person-specific latent cognitive markers more directly for
the prediction of clinically meaningful outcomes. In this paper,
our inference will be directly towards predicting whether a par-
ticipant has the clinical condition, given their task behavior and
performance. We will demonstrate this through the application of a

"For example, we often see models of the form 6, ~ N (ﬁo + B1MClp, 02) (or nonlinear
variations thereof) in which the clinical state of person p (MCly,) is treated as known while the
cognitive parameter 6, is treated as the unknown. Realistically, both the latent parameter 6 and
the clinical state are unknown, and the latter must be inferred from diagnostic data.



learning model that captures practice effects in cognitive testing
and show how model-based latent cognitive markers can be com-
bined with manifest predictors into a partially observable predictor
model. For example, rather than capturing how much variance in
person-specific learning rates is explained by participants’ clinical
MCI status, we will formulate a partially observable predictor model
for predicting the risk for MCI as an outcome.

A partially observable predictor model

Here we define the partially observable predictor (POP) model
class. The distinguishing feature of POP models is that they use
both manifest (observable) and latent (unobservable) variables in
order to predict a given outcome. The latent variables are identified
by participants’ behavior when completing a cognitive task, and
must be inferred with a generative model. The key components
of the POP model are (a) a generative model for extracting latent
features, and (b) a structural model to combine observable and
unobservable predictors into a single predictive value. We will
discuss these two component models first, before reviewing the
Bayesian inference procedure we use to apply POP models to
data.

Note that, throughout, we use ‘manifest’ and ‘latent’ interchange-
ably with ‘observable’ and ‘unobservable, respectively. We use
‘prediction’ in the statistical sense, which does not imply that the
criterion happens or is observed at a later time.

Process model to identify latent features. We start by specify-
ing a model with which we can extract latent cognitive features
from high-frequency data. For repeated measures of performance
scores collected from a participant ¢, at occasions ¢, we model the
data y.; as a function of latent cognitive markers that represent
theoretically meaningful constructs. In our illustrative example,
we use an exponential model of practice — a learning process
model that captures practice effects in repeated cognitive testing
(Heathcote, Brown, & Mewhort, 2000). However, we emphasize
that this process model could take the form of any other parametric
model that proposes a latent data-generating mechanisms of a
set of observations — the model could be simple (e.g., a Gaussian
distributions with some mean and standard deviation), but here we
introduce a process model with interpretable parameters.

Our selected process model of practice effects, the exponential
learning model, is specified as:

yri ~ N (ai + gie” M0 e2) (1]

On the left hand side we have our data y.;, which will be response
times coming from repeated assessments with a cognitive task,
from participant ¢, on occasions ¢. On the right hand side we define
how these data were generated by parameterizing an assumed
theoretical process. In this particular case: (1) a; captures person
i’'s asymptotic or peak performance, (2) g; quantifies person i’s
gain in performance, (3) r; captures person ¢’s learning rate across
measurements (with M;; denoting person i’s measurement time
across t occasions), and finally (4) ¢; is the standard deviation of
the time-and-person-specific error (noise) term, to capture person
i's intra-individual variability (i.e., performance inconsistency, see,
e.g., Dzierzewski et al., 2013). These four cognitive markers are
illustrated graphically in Figure 1. For ease of exposition, and also
to potentially abstract away the generative model itself, we will
often collect all process model parameters of person ¢ in a vector
of latent variables, A;.
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Fig. 1. The exponential learning model. The observed day-level performance data, in
terms of mean response time, are represented by dots, while model fit is illustrated
by a continuous negative exponential curve. This model is governed by four param-
eters: gain and learning rate, which control the height and the steepness/slope of
the exponential curve, respectively; variability in performance, which captures the
dispersion of measurements around the fitted model; and asymptotic performance,
which quantifies the position of the curve’s asymptote.

Structural model to combine observable and unobservable
predictors. A typical next step would be to regress the latent cog-
nitive parameters on a set of covariates or predictors. For example,
considering the asymptote parameter a;, which represents a per-
son 7’s peak performance (disentangled from practice effects),
researchers might want to know if individual differences in asymp-
totic performance on cognitive domain are meaningfully related to
other person-level characteristics, such as sex, age, ethnicity, or
some clinically meaningful outcome like MCI, genetically inherited
AD status, or suicidal ideation. In this case, one might choose to
regress the person-specific estimates of asymptote (a;) on those
manifest variables, such as: a; ~ N(Bax;,02), where 3, is a set
of regression weights corresponding to person-level covariates x;,
and o2 captures residual variation. This step is useful for establish-
ing that individual differences in latent features are meaningfully
related to person characteristics, such as asymptotic performance
in our case would typically be related to age or mild cognitive
impairment status as a characteristic and not as an outcome.

In applied healthcare settings, a clinician might want to use the
results on the latent cognitive markers extracted from the repeated
assessments differently: they want to predict the probability of a
clinical outcome, such as MCI status. This could be useful, for
example, if they have access to remotely collected response time
data but lack the resources or access needed to bring an individual
back to the clinic for comprehensive neuropsychological testing
for establishing MCI status. Alternatively, such prediction could
be part of some continuous monitoring for dementia risk that is
based on remote ambulatory testing on people’s smartphones.
To be able to offer these inferences, we will establish predictive
links directly between our latent cognitive markers and MCI status,
while also appropriately accounting for demographic characteristics.
That is, while in many empirical studies MCl is used on the right-
hand side of predictive equations—predicting sources of individual
differences in the latent cognitive features on the left-hand side—
here we want to treat it as an outcome.

To establish the usefulness of the cognitive features for predic-
tion, our analysis should involve a structural model making this
prediction. Let us denote the manifest covariates of participant ¢
with the vector x;, their latent features with the vector A;, and call
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their key, clinically meaningful outcome z; (i.e., something interest-
ing to detect, e.g., MCI status). We can then write the structural
model for a binary outcome variable z; as

T, = Iogistic (60 + BAA; + Bxxi)
z; ~ Bernoulli () ,

in which B, and Bx are the vectors of regression weights that
apply to the latent and manifest predictor vectors, respectively.

For our running example, we may try to predict MCI status
from our latent cognitive markers while accounting for manifest
demographic variables such as age, sex, education level and racial
and ethnic differences. We would then choose

BiAi = Baai + Bggi + Brri + Beei
Bix;
T, = Iogistic (ﬁo + BLA; + Bxxi)
MCI; ~ Bernoulli () ,

(2]

where MCI; is person ¢'s MCI status, being predicted by a logisti-
cally transformed linear combination of predictors on the right hand
side, namely /3y denoting the intercept, coefficients Sa, 8g, Br,
and 8- capturing the effect of our latent predictors a; (asymptote),
g: (gain), r; (learning rate) and ¢; (intra-individual variability), re-
spectively, and coefficients S.ge (Age), Bsea (S€X), Bedw (years of
education, abbreviated to ‘Edu’), B4 (race, abbreviated to ‘Rac’),
and S, (ethnicity, abbreviated to ‘Eth’) quantifying the effect of
their associated manifest predictors. The deterministic parameter
m; Will be referred to as the “MCl risk,” as it is the model-inferred
probability that participant ¢ has MCI.

Inference with the joint Bayesian multilevel model . The latent
cognitive markers in the process model are estimated with uncer-
tainty. We join the two component models in a multilevel Bayesian
framework so that the uncertainty in prediction from different error
sources is propagated in a statistically sound manner (Boehm,
Marsman, Matzke, & Wagenmakers, 2018; Etz & Vandekerckhove,
2018; Wagenmakers et al., 2018). This approach allows for simul-
taneous estimation of cognitive markers, all regression coefficients,
and variance components. The model is illustrated as a directed
acyclic graph in Figure 2 (see, e.g., Lee & Wagenmakers, 2014, for
more on the graphical model formalism). We can see there that the
latent parameters simultaneously inform the cognitive performance
data and the MCI status data. Multiple arrows emanating from
each latent predictor is critical to the POP model, as the param-
eters must be constrained by the behavioral data in order to be
identifiable and usable as predictors in the structural component
model.

For our running example, this means specifying prior and
hyperprior distributions for all parameters. For the process
model parameters, we pool the person-level estimates via group-
(population)level distributions:

{ai ~ N(pa,02),
Ti~ N(,U/»,-,Ug),

9i ~ N(ug,a3), 3]
Ei ™~ N(/"’an—g)'
For the hyperparameters, we typically choose non-informative
priors that will not bias the estimation. On the means, we
choose u. ~ N(0,1), and on the standard deviations, we set
0. ~ N4(0,1) (the positive half-normal distribution). For the
regression coefficients, we set similarly non-informative priors:
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Fig. 2. A graphical model representation of our predictive model. In the graphi-
cal model formalism, unshaded nodes indicate parameters, shaded nodes indicate
observed data, and square nodes indicate discrete values. Nodes that receive an
arrow are partly determined by the node where the arrow originates. Plates indicate
repetitions of their contents. The figure shows the four parameters of the model
of practice: a;, g:, 7i, and ;. Each of these latent parameters is person-specific
and is used to predict the behavioral data y;, which is the vector of response times
provided by person i. y; is additionally informed by the data node M; (a vector
of measurement times, or more generally information about the data collection de-
sign). The latent parameters are then used again to predict z;, the mild cognitive
impairment diagnosis. In that prediction, there is an intercept 8o, the latent variables
have regression weights contained in B 5, and additional manifest variables x; have
regression weights contained in Bx.

Be ~ N(0, 1), where the ¢ subscript stands in for 0 (intercept), a,
g, T, € (latent predictors), Age, Sex, Edu, Rac, and Eth (manifest
predictors) in our current example. These prior settings assume
that all covariates are standardized or dummy-coded.

The Bayesian implementation ensures that even when limited
data is available (i.e., not much power to detect an effect), the
resulting inferences are correct given that amount of data (but
possibly with high posterior uncertainty; Wagenmakers et al., 2018).
It also allows for non-binary statistical inference: Given the current
data, we can easily express how much evidence we have for an
effect. In our example, we might express the amount of evidence
the data provide in favor of the predictive power of a particular
predictor for MCI.

Application: Predicting mild cognitive impairment in
the Einstein Aging Study

Study Design. The Einstein Aging Study (EAS) is an ongoing lon-
gitudinal research project examining risk factors for MCI and de-
mentia. Participants of the EAS, all English-speaking, ambulatory
residents of Bronx County, NY, aged 70 and above, were enlisted
from local registered voting lists. The study was approved by the
Albert Einstein College of Medicine Institutional Review Board and
all participants gave written informed consent.

The latest analysis includes data from 316 participants. The
average age of the sample at the outset of the study was 77.54
years, with a standard deviation of 4.98 years, and 67% were fe-
male (n = 105 male, and n = 211 female). The participant pool of
the study reflected a diverse mix of racial and ethnic backgrounds,
with 46.2% (n = 146) identifying as non-Hispanic Whites, 39.9%
(n = 126) as non-Hispanic Blacks, 9.8% (n = 31) as Hispanic

Pennsylvania State University |

zitaoravecz.net | March6,2025 | 3



[ Symbol Search }

=

=

Which of these matches
a pair above?

Fig. 3. lllustration of the Symbol search cognitive task from the Einstein Aging Study.

Whites, 2.9% (n = 9) as Hispanic Blacks, 1.0% (n = 3) as Asian,
and 0.3% (n = 1) as more than one race/ethnicity. The average ed-
ucational level of the sample was 15.09 (SD = 3.55) years. Utilizing
the Uniform Data System (UDS) neuropsychological assessment
battery supplemented with the Free and Cued Selective Reminding
Test (Katz et al., 2021) and Jak-Bondi criteria (Jak et al., 2009),
29.1% (n = 92) of participants were classified as having MCI at
the study’s baseline.

The EAS utilizes a measurement burst design, combining fre-
quent ecological momentary assessments with in-clinic neuropsy-
chological tests and demographic data collection. Over a 16-day
period, participants engage in six short sessions daily—each last-
ing no more than five minutes—using smartphones provided by
the study. These sessions, conducted during usual waking hours
across various daily settings, consist of cognitive tasks (‘brain
games’) and brief surveys on their immediate experiences, though
the latter is not part of the current study’s analysis. Four out of
the six daily sessions are prompted at intervals of about 3.5 hours
by random beeps throughout the day, while the first and last ses-
sions are initiated by the participants themselves. In this study,
numerous cognitive domains are assessed, but the current focus
is on response time (RT) data from the Symbol Search task, which
evaluates processing speed. The analysis focused on the daily
mean response times.

Cognitive assessments with the Symbol Search task. In the current
study, the Symbol Search task, depicted in Figure 3, is used to
assess processing speed. During each trial, participants were
presented with three pairs of symbols at the top of the screen and
two pairs at the bottom. The task required participants to quickly
and accurately identify which one of the bottom pairs matched one
of the top three pairs. Each session consisted of 11 trials. For
analysis, we compiled daily aggregates of the reaction times (RTs)
for correctly matched trials and examined them using the Bayesian
Exponential Model.

Demographic variables. Participant demographic data were ob-
tained through questionnaires. For the purposes of the present
analysis, we used the following demographic variables: age (ex-
pressed in years and standardized), sex (categorized as male or
female based on participants’ self-declared sex, with male serving
as the reference category), educational attainment (measured in
total years of schooling and standardized), and ethnicity (classified
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as Caucasian, African American, Hispanic White, Hispanic Black,
Asian, or Other). Wang et al. (2021) provide detailed discussion
of these demographic variables and their relevance for predicting
MCI status.

Mild cognitive impairment status. Each participant was subjected to
a comprehensive neuropsychological evaluation to determine their
cognitive status. This was an in-clinic assessment and encom-
passed tests for memory, executive function, attention, language,
and visuospatial skills (Katz et al., 2021). The criteria for MCI
classification adhered to the Jak-Bondi criteria (Jak et al., 2009).

Results.

Implementation. We implemented the model (using Egs. 1-3) in
Stan (B. Carpenter et al., 2017), which can be accessed from R (R
Core Team, 2022) through the rstan package (Stan Development
Team, 2023). Code is available at the OSF page of the study:
https://osf.io/4qpxs/. We analyzed the EAS data by running
4 parallel chains, 2500 warm-up plus 2500 posterior samples
per chain, for a final posterior sample size of 10,000. We did
not find any problems with convergence based on the diagnostic
criterion R (Gelman et al., 2013; all R < 1.03) and visual check
of the sample chains. We checked the quality of the sampling by
calculating effective sample size (the proportion of samples that
can be considered as non-correlated draws in the posterior), which
showed good sampling quality (above 300 for 99.8% parameters,
and above 1000 for 98% of the parameters, including all the key
hierarchical parameters). Analysis took less than 20 minutes on a
MacPro laptop.

Model fit. We checked model fit first with visual inspection of the
correspondence between each individual’s observed data and their
model-predicted learning curve (all generated plots are available
on the OSF page of the project). Then we used those data and
curves to compute the proportion of variance in the data that is
explained by the process model (akin to an R? statistic), which
was .83. Both methods showed acceptable fit. However, both of
these methods focused only on the fit of the process model to the
observed data, and not on the prediction of MCI with the logistic
regression component from Egs. 2 (for which, see the Predictive
Accuracy section).

Parameter estimates. The top part of Table 1 shows the results from
the logistic regression coefficients linking the latent features and
manifest covariates to MCI status. The first column shows the
name of the predictors/covariates, the second the posterior mean
as a point estimate for their corresponding regression coefficient,
and the last two columns display the directional probability. Instead
of using a binary rule, such as excluding zero from a 95% interval,
this allows for a graded approach to quantify support for effects.
In this application, we will consider coefficients with directional
probabilities between 91% and 95% as possibly credible effects,
between 95% and 99% as likely credible effects, and over 99%
strongly credible effects. The intercept is the first one of these,
with its entire posterior mass in the negative range, suggesting
an overall larger probability of not having MCI than having MCI in
this sample, which makes sense given that only about one-third
of the whole sample had MCI. From our latent cognitive markers,
two showed credible links to MCI status: higher asymptotic perfor-
mance (i.e., slower peak performance response time), and slower
learning rate both predicted MCI. Regarding our manifest predic-
tors, being Black tended to correspond to higher probability for MCI.
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Table 1. Regression coefficient estimates and their corresponding
directional probabilities and estimates of the hierarchical parameters
of the latent predictors with 95% credible intervals.

Predictors mean  P(negative) P(positive)
Intercept -2.8047 1.0000 0.0000
Asymptote 0.6362 0.0027 0.9973
Learning Rate -1.4253 0.9923 0.0077
Intra-individual variability 0.8513 0.0671 0.9329
Gain -0.0339 0.5790 0.4210
Age (standardized) 0.1929 0.0794 0.9206
Sex (1: male) -0.1975 0.7606 0.2394
Years of education (standardized) 0.1907 0.0985 0.9015
Race (1: Black) 0.4855 0.0469 0.9531
Ethnicity (1: Hispanic) 0.3031 0.2391 0.7609
Group-level summaries mean PCI PCI
2.50% 97.50%
Asymptote Mean 2.9533 2.8468 3.0606
Asymptote SD 0.9053 0.8170 1.0056
Learning Rate Mean 0.5367 0.4686 0.6106
Learning Rate SD 0.2989 0.2462 0.3604
Intra-individual variability Mean 0.7658 0.7145 0.8178
Intra-individual variability SD 0.4436 0.4011 0.4903
Gain Mean 1.8067 1.6276 1.9913
Gain SD 1.1512 1.0073 1.3037

There was weak evidence that more intra-individual variability (i.e.,
inconsistency in performance) and older age were also predictive
for MCI status. The bottom part of Table 1 additionally shows
estimates of the hierarchical parameters of the latent predictors
with corresponding 95% credible intervals.

Interpretation of parameters. Using the posterior distributions of
these parameter estimates in combination with Equation 2, we
can calculate how MCI risk changes as a function of our cognitive
markers. For example, if we consider a participant who has aver-
age values on everything (including latent and manifest predictors,
and is male, White, and non-Hispanic for the dummies), their prob-
ability of MCl is .25. However, if this individual is 1 SD higher than
the average regarding their asymptotic performance (e.g., slower
reaction time), this probability goes up to .37, and if they are Black,
it increases further to .49. Additionally, if this individual is also 1
SD lower in learning, then the probability increases to .59. Figure 4
further illustrates the effect of the latent variable a;, which captures
the asymptotic performance of a participant <. The two participant
populations (histograms of MCI positive and MCI negative partic-
ipant numbers) visibly separate along the horizontal axis, where
the latent variable is plotted. An S-shaped curve connects a; to
participant i’'s MCI risk (denoted ; in Eq. 2) and illustrates the
effect of a; on our MCI prediction for a participant whose other
predictors are otherwise at baseline (for Sex, Race, and Ethnicity)
or at the population average (for others).

Predictive accuracy. The goal of our POP model approach is to
decompose MCI risk into constituent components with their own
psychological interpretability — a mix of manifest variables like age
and sex with latent variables like asymptotic (“peak”) performance.
However, the interpretability of these components comes at a
cost: the added complexity of the model may harm its predictive
performance (“overfitting;” Hastie, Tibshirani, & Friedman, 2009),
and we may not be willing to trade much predictive accuracy for the
benefit of interpretability. For this reason, we evaluate the predictive
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Fig. 4. An illustration of the nonlinear predictions made by the partially observable
predictor model. On the horizontal axis is the person-specific estimate of the asymp-
tote parameter a;. The downward-pointing (blue) histogram shows the number of
participants in the MCl-negative group as a function of a;, and the upward-pointing
(red) histogram shows the corresponding number of participants in the MCl-positive
group. The red histogram is somewhat to the right of the blue histogram, indicating
that participants in the MCl-positive group tend to have higher asymptotes a;. The
thick black curve shows the MCI risk for participants with average (or baseline) values
on all predictors except a;. As expected, the curve is near 0 in the range of a; where
most participants have negative MCI status, rises to above 0.5 at a; ~ 4, but does
not approach 1 anywhere in the realized range of a;.

performance of our proposed model and compare it against two
more conventional models: one that uses only manifest predictors,
and one simplified POP model that uses behavioral data but no
process model to aid in interpretability.

Evaluation metrics. To evaluate predictive performance, we calcu-
lated the Area Under the Curve (AUC) of the Receiver Operating
Characteristic (ROC) curve, which summarizes the diagnostic abil-
ity of a binary classifier system as its discrimination threshold is
varied (Swets, 1988). The AUC is a preferred statistic especially
when dealing with imbalanced datasets in which accuracy alone
may be misleading.

Cross-validation. We calculated the AUC via a ten-fold cross-
validation procedure (Hastie et al., 2009). From the original data
set (N = 316) we first created ten subsets. We stratified the
subsets such that, like the full data set, each subset contained
about 30% MCI positive participants. We then fit the model ten
times, each time holding out the MCI status of a different subset of
participants. We estimated their latent process parameters from
their cognitive task data and combined those with their manifest
predictors to obtain a person-specific predicted MCI risk 7 for
each holdout participant. We then created a ROC curve by varying
the critical value of 7°® by which we categorized participants as
MCI negative or positive, and we computed a confidence interval
around the ROC curve using a bootstrap procedure provided by
R’s pROC package (J. Carpenter & Bithell, 2000; Robin et al.,
2011).

Comparator models. For comparison, we then similarly calculated
ROC curves for a model using only the manifest predictors (the
“Manifest only” model) and a POP model that combines manifest
predictors with a simplified generative model of RT (describing
RT only in terms of mean and standard deviation; the “Manifest +
latent descriptors” model).
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Fig. 5. Receiver operating characteristic (ROC) curve of two partially observable
predictor models, compared to a model that only uses manifest predictors. On the
vertical axis is the true positive rate (correct predictions of positive MCI status) and
on the horizontal axis is the false positive rate (incorrect predictions of positive MCI
status). The area under the curve (AUC) is a concise summary of the predictive ability
of the model. The AUC is lower for the “Manifest only” model but indistinguishable for
the “Manifest + latent descriptors” and “Manifest + latent process” models. Shaded
bands around the ROC curve indicate a 95% confidence interval obtained through a
bootstrap procedure (J. Carpenter & Bithell, 2000; Robin et al., 2011).

Results. ROC curves for the three models are shown in Figure 5.
The AUC of the “Manifest + latent process parameters” model
was .7346 (95% CI: [0.6680, 0.8013]). The AUC of the “Manifest
only” model was .5640 (95% CI: [0.4938, 0.6342]), with its confi-
dence interval including .5, and the AUC of the “Manifest + latent
descriptors” model was .7371 (95% CI: [0.6717, 0.8026]).

Discussion. The results of this cross-validation exercise led to three
conclusions. First, the lower AUC for the “Manifest only” model
speaks to the predictive utility of behavioral data above and beyond
demographics. The AUC for this model was close to .5, suggesting
that predicting MCI status based solely on demographic informa-
tion yields accuracy nearly equivalent to random guessing. Second,
the observation that the AUCs and ROCs for the “Manifest + latent
process parameters” and “Manifest + latent descriptors” were in-
distinguishable assuages any concerns of overfitting by the more
complex process model. Third, the AUCs of the POP models are
fair but also leave room for improvement (see, e.g., the examples in
Swets, 1988). Future work focusing on predictive accuracy could
use POP models to factor in additional sources of evidence, possi-
bly from a variety of tasks in a battery. However, for the current data
we conclude from this analysis that the “Manifest + latent process
parameters” model improves interpretability with no concomitant
reduction in predictive accuracy.

Conclusions and discussion

There is a growing consensus that 40% of dementia cases are
due to modifiable risk factors (Lee et al., 2022). Understanding the
early signs of subtle cognitive decline, for example in preclinical
ADRD, can open up new possibilities for secondary prevention
and monitoring. These subtle early cognitive changes are most
likely related to specific subprocesses that we need to identify.
We have introduced partially observable predictor (POP) models,
an approach that combines observable demographic variables
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with unobservable predictors derived from behavioral data. We
demonstrate how this approach may be applied to test the role
of cognitive process parameters for early detection. POP models
let us discern which underlying psychological components are
relevant for predicting clinically meaningful outcomes, offering a
clearer picture on early-stage neuropsychological impairments.

Conclusions from the Einstein Aging Study. Using the Einstein Ag-
ing Study (EAS) data set, we have demonstrated that data from
repeated cognitive measures improved prediction accuracy when
compared to a model with only manifest variables. Furthermore,
we were able to decompose the contribution of these cognitive
measures using a cognitive process model, which allowed us to
compare the individual contribution of interpretable cognitive sub-
processes. For the processing speed task in the EAS, the learning
rate and peak performance turned out to be important for prediction
of mild cognitive impairment.

Limitations of the example data set. Even though our predictive
model pooled information from multiple sources, total prediction
accuracy was lower than in some previously published studies
(e.g., Oh, Kim, & Lee, 2024; Yan, Zhang, & Chen, 2023). This
was true independently of the application of the POP model (i.e.,
it was also true when using only the manifest predictors), leading
us to believe that the MCI categorization used in the EAS data
(Chang et al., 2024) was noisier than other methods (Devlin et al.,
2022). Indeed, in longitudinal data with this categorization method,
participants even occasionally changed status from positive back
to negative over time.

Potential for future uptake. Since the response time data that we
used to derive our cognitive markers was collected in ambulatory
settings—specifically, via smartphones—the approach facilitates
easy screening and monitoring of mild cognitive impairment risks.
These measures represent naturalistic, real-time functioning. While
neuropsychological evaluations are widely regarded as the defini-
tive method for identifying cognitive deficits, they are extensive
and generally need to be conducted in person, restricting their
broad applicability in large-scale research and clinical studies. The
EAS data were collected with a cognitive task that could easily
be collected remotely, multiple times per year, representing a low
barrier for entry for underrepresented populations who might not
have easy access to clinicians.

We are cautiously optimistic about the broader appeal and po-
tential for uptake of our proposed approach. Given that cognitive
researchers could use POP models to incorporate many different
process models—whichever is more appropriate for the behavioral
data at hand—into a one-step predictive model, we anticipate inter-
est. The key barrier to uptake is the technical challenge involved in
the implementation of a Bayesian multilevel model in Stan. How-
ever, Bayesian methods and models are no longer the obscure
niche skill they once were — the increase in relevant course books
and tutorials (Lee & Wagenmakers, 2014; McElreath, 2020; Van-
dekerckhove, Rouder, & Kruschke, 2018; Wagenmakers et al.,
2018) strongly suggest that Bayesian cognitive modeling is becom-
ing a leading paradigm in computational cognitive science that is
suitable for translation to clinical science (Huys, Maia, & Frank,
2016; Maia & Frank, 2011). Additionally, we have made all of our
data analysis code (Stan/R scripts and an associated Dockerfile)
freely available via OSF. To facilitate adoption in this field even
more, it would be optimal to have a user-friendly online platform
that integrates data collection with the delivery of analytical results
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to clinicians. Although we do not currently have such a platform,
building such tools has been an NIH funding priority (e.g., National
Institute on Aging, 2022), and recent progress (e.g., Hakun, Elbich,
Roque, Yabiku, & Sliwinski, 2024) gives us confidence in these
becoming a reality.

Future work. Further studies that use POP models in different data
sets might identify other subprocesses extracted from cognitive
tasks capturing performance on a different cognitive domain, and a
combination of information from multiple multi-domain tasks could
lead to increased predictive accuracy, but more importantly to
greater understanding that could inform targeted intervention.

Secondly, while we used concurrent MCI status in the current
application, it is possible to gather data on which non-MCI partic-
ipants at baseline develop MCI in the future (‘incident’ MCI). In
future work, we will use this approach for prediction in the epidemi-
ological sense, with a focus on predicting an outcome in the future
based on information in the present.

Finally, we note that while we focused on cognitive models,
the presented approach can be applied across various fields. In
computational psychiatry, for instance, a comparable strategy is
used to distill latent emotional dynamics, which can then inform
predictive models for critical clinical outcomes like suicide risk.
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