
The Ratcliff diffusion model (RDM) has garnered sig-
nificant attention in recent years as a model for the simul-
taneous analysis of reaction time (RT) and accuracy data.
There are three main reasons for its popularity. First, it
can be applied in many fields (Ratcliff, 1978, 1981, 1988,
2002; Ratcliff, Gomez, & McKoon, 2004; Ratcliff &
Rouder, 1998, 2000; Ratcliff, Thapar, & McKoon, 2004;
Ratcliff, Van Zandt, & McKoon, 1999; Strayer & Kramer,
1994; Thapar, Ratcliff, & McKoon, 2003). Second, it per-
forms extraordinarily well in terms of parsimony and de-
scription of interesting patterns in RT data (see, e.g., Rat-
cliff, 1987; Ratcliff & Rouder, 1998). Third and finally, its
main parameters have interesting process interpretations
that allow for substantive insights (Voss, Rothermund, &
Voss, 2004). If the RDM has one significant drawback,
it is that the model is prohibitively difficult to apply in
practice, to the point that methods for fitting the RDM to
experimental data are a research topic in their own right
(Ratcliff & Tuerlinckx, 2002; Tuerlinckx, Maris, Ratcliff,
& De Boeck, 2001; Tuerlinckx, 2004; Vandekerckhove &
Tuerlinckx, 2007b; Voss & Voss, in press; Wagenmakers,
van der Maas, & Grasman, 2007). Only recently, are at-
tempts being made to render the RDM more applicable in
research practice (Vandekerckhove & Tuerlinckx, 2007a,
2007b; Voss & Voss, 2007). This article presents a MAT-
LAB toolbox that is exactly such an attempt.

In the next four sections, we will (1) briefly describe the
RDM, (2) repeat the basics of matrix methods in statisti-
cal modeling, (3) provide some practical information re-
garding a new tool, the Diffusion Model Analysis Toolbox
(DMAT), and (4) give two didactic examples with code.
For conceptual details regarding the RDM, the fitting pro-
cedures, and associated statistical treatment, the reader is
referred to Vandekerckhove and Tuerlinckx (2007b).

The RaTcliff Diffusion MoDel

The basic principle behind the RDM is that of inte-
gration of noisy evidence over time. It is assumed that,
in order to make a speeded choice between two options,
evidence is accumulated sequentially over time. As soon
as sufficient evidence toward one option or the other has
gathered, the process stops and outputs a decision (absorb-
ing boundaries). The accumulation process is governed by
two distinct forces—namely, a tendency to drift toward
either boundary (drift rate) and a stochastic component in
the step size and direction on the decision dimension. The
process itself is not assumed to be necessarily unbiased:
The starting point of the process may be closer to one
boundary than the other, increasing the a priori probability
of one response. Figure 1 shows a graphical representation
of the diffusion process.

In all, the RDM as implemented in DMAT has nine free
parameters for each condition. Table 1 lists them, their
notation, and their usual interpretation.

Matrix notation and Design of experiments
In order to impose restrictions on parameters across con-

ditions, DMAT makes use of a matrix modeling method
that is similar to the standard technique of general linear
modeling (see Vandekerckhove & Tuerlinckx, 2007b, for
a more detailed explanation and examples of this method).
In particular, if there are c conditions, a vector c

c31
 of a

given type of parameters across conditions is assumed to
be the result of the matrix product D

c3m
 3 Q

m31
, given that D is

a design matrix and that Q is a vector with free parameters
that remain. Crucially, Q contains no more elements than
does c (m # c), often resulting in a more parsimonious
model with fewer parameters to estimate.

 61 Copyright 2008 Psychonomic Society, Inc.

Diffusion model analysis with MaTlaB:
a DMaT primer

Joachim VandekerckhoVe and Francis Tuerlinckx
University of Leuven, Leuven, Belgium

The Ratcliff diffusion model has proved to be a useful tool in reaction time analysis. However, its use has
been limited by the practical difficulty of estimating the parameters. We present a software tool, the Diffusion
Model Analysis Toolbox (DMAT), intended to make the Ratcliff diffusion model for reaction time and accuracy
data more accessible to experimental psychologists. The tool takes the form of a MATLAB toolbox and can be
freely downloaded from ppw.kuleuven.be/okp/dmatoolbox. Using the program does not require a background
in mathematics, nor any advanced programming experience (but familiarity with MATLAB is useful). We dem-
onstrate the basic use of DMAT with two examples.

Behavior Research Methods
2008, 40 (1), 61-72
doi: 10.3758/BRM.40.1.61

J. Vandekerckhove, joachim.vandekerckhove@psy.kuleuven.be

62 VandekerckhoVe and Tuerlinckx

tion toolbox also needs to be installed. If they are avail-
able, DMAT will make use of the Statistics and Symbolic
Math toolboxes, but they are not required.

The toolbox was developed and tested on Windows and
Linux platforms.

installation
The software tool we are presenting is a MATLAB

toolbox that can be freely downloaded via ppw.kuleuven.
be/okp/dmatoolbox. Upon filling out a form, you will be
e-mailed a link to where a ZIP archive is available. The
archive contains some 300 files, 70 of which are MATLAB
functions. Unpackage the file to the \toolbox folder of your
MATLAB install, and then execute the included installer
function from the MATLAB command window. The in-
staller will guide you from there. If you did not unpackage
the ZIP archive in the toolbox directory (e.g., because you
do not have write access to it), the installer will ask you to
locate it first. When the installation is finished, you can test
the toolbox by calling the function test_main. Since DMAT
is constantly under development, its most recent version,
bug reports, and fixes can be found at the Web site above.

end user license agreement
While the installer runs, you will be asked to read and

accept an end user license agreement. Please note that,
although DMAT and its source code may be downloaded

Depending on how the design matrix is formulated, the
restrictions change. If, for example, D is a column of ones,
then for any value of Q, the product c will be a vector with
all elements equal. On the other hand, if D is the identity
matrix, then c will be identical to Q, and no restrictions will
have been applied. If D contains a column of ones and a sec-
ond column of covariate values, restrictions in the form of a
linear regression are applied. The ̂Q vector will then contain
an estimate of the intercept as its first element and the re-
gression weight of the linear model as its second element.

Of course it is possible to construct even more complex
models, such that a parameter may be made dependent on
more than one covariate, linear or categorical; on interactions
of the covariates; on participants; and so on. Also, different
designs may be implemented for different parameters.

DMAT requires that a design matrix be formulated for
each parameter of the model. In most cases, however, the
design matrix will be a column of ones, indicating no vari-
ability across conditions. (This is also the default setting
for DMAT models.)

The Diffusion MoDel
analysis ToolBox

Requirements
DMAT requires that you have MATLAB 7.2 (Version

R2006a) or a more recent version installed. The Optimiza-

figure 1. a graphical representation of the diffusion process. The
curved line indicates the amount of evidence for the “upper” response
as it evolves over time. at about 700 msec, the upper boundary is crossed
and the process ends. see the text and Table 1 for more details.

Time (sec)

0 0.125 0.250 0.375 0.500 0.625 0.750

Ev
id

en
ce

a

z

T
er

V

Table 1
The nine free Parameters of the Ratcliff Diffusion Model, as implemented by DMaT

 Symbol Parameter Interpretation

Decision process a Boundary separation Speed–accuracy trade-off (high a means high accuracy)
z Starting point Bias for either response (z = a/2 is neutral)
v Drift rate Amount of input information; Quality of the stimulus

Nondecision Ter Nondecision time Sum of all other processes involved (motor RT, encoding . . .)
Intertrial variability sz Intertrial range of z Participant’s variability in bias

st Intertrial range of Ter Participant’s variability in nondecision time
η Intertrial SD of v Variability in stimulus quality, or variability in attention or motivation

Mixture model π Proportion nonoutliers Proportion of data resulting from a diffusion process
 γ Proportion guesses Proportion of outliers that are guesses (and not due to delayed startup)

dMaT PriMer 63

GUI, it can be a double array in a MATLAB file (.mat) or
ASCII data in a tab-delimited file (.tab or .dat), a comma-
delimited file (.csv), or a space-delimited file (.txt).

General use of the Toolbox: command interface
input. The most important function in DMAT is called

“multiestv4.” This function accepts as its first input a
data set (as a three-column double array) and as second
input an optional options structure. A large part of using
DMAT is constructing this options structure, a MATLAB
variable with many fields containing different possible
settings. Table 2 gives an overview of the settings (field
names), their default values, and their effects. The default
options structure can be obtained by calling the function
multiestv4 without input arguments. Then you can edit
the fields of this structure to fit your needs. The standard
syntax for this is

opts = multiestv4();
opts.fieldname = value;

and then, to estimate the parameters,

output = multiestv4(data,opts);

This will return an output structure, which contains in-
formation about the model fit and the optimization
algorithm.

output. Like the options structure, the output structure
is a MATLAB variable that has many different fields, each
one containing information about the model fit or the al-

at no cost, it is not permitted to redistribute the code or de-
rived code without the authors’ consent. We welcome co-
operation from third parties in further developing DMAT,
but in order to maintain transparency regarding exactly
which methods an end user has implemented, we want the
distribution of this toolbox to remain centralized.

use anD exaMPles

Two interfaces
DMAT features both a graphical user interface (GUI)

and a command interface (CI). To start the GUI, simply
type “dmatgui” in the MATLAB command window. In
the examples, we will focus mainly on the CI, which re-
quires some coding. Using the GUI should be largely self-
 evident if the commands for the CI are known. Where it is
not self-evident, we will explicitly mention how the GUI
expects and handles user input.

Data sets
For either interface, the data set should be provided in

a proper format, meaning that it should be a three-column
matrix in which each row indicates a trial in the experi-
ment. Of the three columns, the first contains the condi-
tion, the second the response type (0 or 1, usually meaning
incorrect and correct), and the third the RT in seconds. If
the data matrix contains only two columns, all trials will
be assumed to be in the same condition. If you use the CI,
the data should be contained in a double array. For the

Table 2
The fields of DMaT’s options structure, With Default Values and effects

Field Name Default Value (multiestv4) Effect/Use

DesignMatrix <Columns of ones> Parameters allowed to vary across conditions?
Display 'off' How much output should DMAT give to the command window?
EWMA <structure> Provide parameters for the EWMA procedure. Defaults are λ = .01, L = 1.5, s = .5.
EstimationMethodScalar 5 (Multinomial likelihood

with fixed bin edges)
Objective function to minimize (Multinomial likelihood or χ2? Fixed bin edges
or percentiles?).

FixedBinEdges [.30,.36,.42,.52,.80;
.38,.47,.56,.70,1.0]

If fixed bin edges, which values to use (in seconds, first row for corrects, sec-
ond for errors).

FixedValues [] Provide a condition 3 parameter matrix with NaN for free parameters and a
specific value for fixed ones.

Guess [] Starting position for the optimization (condition 3 parameter matrix). If none
given, DMAT finds one.

GuessMethodScalar 1 If DMAT has to generate guess, 1 causes it to use ezdiff* and 2 uses a slight per-
turbation of ezdiff’s output.

LongSimplexRuns 1 The number of times the long simplex run should be repeated.
MaxIter 5000 The maximum number of iterations for long simplex runs.
Name 'No name given' A name for the model.
NoFitting 0 If set to 1, only construct objective function, no actual fitting.
NonparametricBootstrap 0 Number of nonparametric bootstrap iterations.
ObjectiveDecimals 7 Number of significant decimals for the objective function.
OutlierMax [] Maximum RT for inclusion.
OutlierMin [] Minimum RT for inclusion.
OutlierTreatment 'None' Which outlier treatment to use.
ParameterDecimals 7 Number of significant decimals for parameters.
ParametricBootstrap 0 Number of parametric bootstrap iterations.
Percentiles [10,30,50,70,90;

10,30,50,70,90]
If estimation with percentiles, which ones to use (values between 0 and 100;
first row for corrects, second for errors).

ShortSimplexRuns 3 The number of times the short simplex run (200 iterations) should be repeated.
SpecificBias [] Per condition, value of B, where B = z/a. If NaN, z and a are estimated separately.
*The ezdiff function implements the EZ-diffusion algorithm, which is described in Wagenmakers et al. (2007) and in Vandekerckhove and Tuerlinckx
(2007b).

64 VandekerckhoVe and Tuerlinckx

parameter estimates can be used as an initial guess of the
next model, resulting in an increase in efficiency. In par-
ticular, if subsequent models are nested, then the parameter
estimates of the more restrictive model will often be a good
starting point for the less restrictive model. DMAT will per-
form the necessary linear transformations automatically.

Then you can start to define the next model and click
“Current Model” again when you are finished. Click “Run”
to start parameter estimation, or save the model queue with
the “Save” button. Note that in the “Save As . . .” window
you can choose to save the queue either in a DMAT native
format (*.dmq) or as an ASCII M-file that can be viewed,
edited, and run from the command line. Both *.dmq files
and generated M-files can be reloaded into the GUI at a
later time by clicking the “Load” button (but you have to
load a data set first, and the models in the loaded queue
have to be appropriate for that data set—i.e., have the same
number of conditions). Note that DMAT, if able, automati-
cally makes emergency back-ups (both of the most recent
queue and of intermediate estimation results), and if some-
thing should go wrong, calling the dmatrescue function
from the command interface might bring relief.

output. As soon as the algorithm has started, an output
window will replace the DMAT main window, allowing
you to browse some descriptive statistics. The window
will be updated as results from the queue become avail-
able. You can simply select the model and output type
from two lists on the left-hand side.

simulating Data
In the examples that follow, we will use simulated data.

DMAT contains several functions that allow you to simu-
late data sets that are ready for use. Appendix A shows a
simple sequence of commands that will produce a data set
with three conditions, which differ only in drift rate. In the
GUI, simply click the “Simulator” button. After you enter
the number of conditions, click “Set” and then input the
parameter set and the number of data points desired. Then
click “Simulate and Save,” select a file name and location,

gorithm. Table 3 contains information about the available
fields and what they mean. Output fields can be browsed
from the command window. The following syntax will
display the contents of the field fieldname:

output(model).fieldname,

where model refers to the numerical index of the model
you are investigating. For example, output(2).Fitvalue
will return the value of the deviance function of the sec-
ond model, and output(2).Df will return the number of
free parameters in the model.

further processing. If two models are nested, the dif-
ference in their deviances follows a chi-square distribu-
tion with a number of degrees of freedom equal to the
difference in number of parameters, under the null hy-
pothesis that the models are equal. Thus, the following
syntax (using DMAT’s chi2test function) will give the p
value of the difference between two models:

>> x2 = output(1).Fitvalue-output(2).
Fitvalue;

>> df = output(2).Df-output(1).Df;
>> p = chi2test(x2,df);

A convenient function in this regard is qtable, which
shows different fit values of models, and also shows the
p value of the difference in fit between each pair of con-
secutive models. (Note that this implies that the p values
reported in a certain row are only correct if that model is
nested in the preceding model.)

General use of the Toolbox:
Graphical user interface

input. In the GUI, you first need to load the data by
clicking the “Browse” button and finding the data set
(which you saved somewhere). When you have set all the
options to your liking, the model can be added to the model
queue by clicking the “Current Model” button. The model
queue stores series of models that can be fitted in a batch
submission. This is often advantageous, since each set of

Table 3
The fields of DMaT’s output structure, With Brief explanations of Their contents

Field Name Contents

DesignVector Point estimates of the free parameters
Df Number of free parameters
FitInfo Fit indices of the model
Fitvalue Deviance of the model
Hessian Estimate of the Hessian matrix at the minimum
Minimum Estimate of the entire parameter set
Name Name of the model
NonparametricBootstrapMean If requested, nonparametric bootstrap estimate of entire parameter set
NonparametricBootstrapStdErr If requested, nonparametric bootstrap estimate of parameters’ standard errors
NonparametricBootstraps An output structure for each nonparametric bootstrap iteration
Options The options structure that the user provided
OutlierReport If requested, information regarding outlier treatment
ParametricBootstrapMean If requested, parametric bootstrap estimate of entire parameter set
ParametricBootstrapStdErr If requested, parametric bootstrap estimate of parameters’ standard errors
ParametricBootstraps An output structure for each parametric bootstrap iteration
Simplex Information regarding the simplex runs (convergence time, number of steps . . .)
StdErr Estimate of the parameters’ standard errors (based on the Hessian matrix)
Time Total time needed for fitting this model
Warnings Anything the user might need to know (e.g., if the Hessian indicates poor model fit)

dMaT PriMer 65

This result indicates that there is a highly significant ef-
fect of condition on the drift rate—which is as we ex-
pected. To get a quick summary of the model fits, use
the qtable function (see Appendix B for the output that
would yield).

example 2: a More complicated Design
Data set. For our second example, we simulate data

with eight conditions. Conditions 1–4 contain an accuracy
instruction, and 5–8 contain a speed instruction (influ-
encing the boundary separation). A second manipulation,
within these groups, pertains to the quality of the stimulus
(influencing drift rate). This time, however, the manipula-
tion is a continuous covariate x, which takes the values
0.2, 0.8, 20.4, and 0.6. In Appendix C, we present code
that will generate such data.

input. We will construct a queue of three models, dif-
fering only in the design matrices. In the first model, we
will apply no design (all parameters constrained to be equal
across conditions). In the second model, the experimental
design is implemented (allowing the first four conditions
to have a different boundary separation from the last four,
and constraining drift rate to be a linear function of the
covariate x). In the third model, we allow both boundary
separation and drift rate to vary freely across conditions (to
test for deviation from the design). Furthermore, we will
tweak some settings of the fitting algorithm. First, we no
longer want to use fixed RT bins, but rather quantile prob-
ability products (Brown & Heathcote, 2003; Heathcote &
Brown, 2004; Heathcote, Brown, & Mewhort, 2002; see
also Vandekerckhove & Tuerlinckx, 2007b). To this end, we
give the EstimationMethodScalar option the value 6 (see
DMAT’s emstable function for a table of valid values for
this setting). We choose the classical percentiles 10, 30, 50,
70, and 90, and add the first and fifth percentiles to achieve
a better fit of the left slope of the RT distribution. Finally,
we choose not to estimate the starting point z, but rather fix
it to a/2, since nothing in the experiment has given us cause
to assume an a priori bias on behalf of the fictional par-
ticipant. Appendix C shows all the code needed to provide
DMAT with this input. In the GUI, the estimation method
and percentiles can be set in the Advanced window, and
the bias can be set via the “Bias: Set” button in the main
window. The specialized design matrices have to be input
manually (or pasted from an external editor).

Two things may be mentioned regarding the code in
Appendix C. First, note the use of two shortcuts that are
available in coding the design matrices. Supplying '1'
(of data type “char array”) for a design matrix will be in-
terpreted as a column of ones, and supplying [] (the empty
array) will be interpreted as an identity matrix (which are
shortcuts in the sense that you don’t need to figure out
exactly how large these matrices ought to be.) Second,
note that in order for DMAT to recognize the “specified
bias” (the restriction that z = a/2), we need to supply a
nonrestrictive design matrix for z. Otherwise, the design
matrix restrictions will override the specified-bias restric-
tion (DMAT will print a warning when this happens). The
nonrestrictive design of course means the identity matrix
(or its shortcut, the empty matrix).

and click “Close.” You cannot input a seed for the random
number generator within the GUI.

example 1: a simple Design
Data set. For our first example, we will imagine an

experiment with three conditions. The difference between
conditions is supposed to be in the quality of a presented
stimulus; hence, we are interested in the difference in drift
rates. For our data set, we will use the one that results from
the code in Appendix A.

input. To analyze these data, we will attempt to fit
two models. In one model, we will make the assumption
that all drift rates are equal (the “reduced model” or “null
model”). In the second model, we will relax that assump-
tion. By comparing the goodness of fit of these models,
we can investigate the effect of condition on drift rate
(much as we would in an ANOVA). As explained in the
section on matrix representations, constraining equality
across conditions implies a design matrix that is a column
of ones. Applying no constraints on a given parameter can
be achieved by using the appropriate identity matrix as a
design matrix.

Appendix B shows code for fitting these two models.
Note that the only setting we have adapted is the Design-
Matrix field. Usually, the rest of the default settings pro-
vided by multiestv4 are well suited.

In the GUI, you can simply click “Current Model” as
soon as the data set is loaded, since the default model
doesn’t need to be changed for Model 1. For Model 2,
the design matrix for drift rate (v) needs to be changed
to an identity matrix. Click the drop-down menu next to
“View/Edit design matrix” and select the “v” option. In
the window that pops up, you can choose to manually
input an identity matrix, or simply select “Identity” in the
drop-down menu. Confirm with OK and click “Current
Model” to add the second model to the queue.1 Finally,
click “Run” to start parameter estimation.

output. We can inspect the best-fitting parameter set
of the second model in the usual way:

>> output(2).Minimum
ans =
 Columns 1 through 4
 0.1520 0.3000 0.0610 0.1120
 0.1520 0.3000 0.0610 0.1120
 0.1520 0.3000 0.0610 0.1120
 Columns 5 through 7
 0.0150 0.1020 0.4030
 0.0150 0.1020 0.1750
 0.0150 0.1020 0.0030

statistical processing. We can find the p value of the
difference in deviance between the two models (since we
know the number of parameters to be estimated increased
by two from Model 1 to Model 2):

>> x2 = output(1).Fitvalue-output(2).
Fitvalue

x2 = 945.317
>> p = chi2test(x2,2)
p = 0

66 VandekerckhoVe and Tuerlinckx

output. We can see the differences between the three
models by calling the qtable function. In the resulting
table, shown as Table 4, we can see that Model 2 outper-
forms Model 1 [χ2(2) = 4,087.38, p < 10210], indicat-
ing a significant effect of the experimental design, but
Model 3 does not outperform Model 2 [χ2(2) = 16.99, p =
.1501]. Model 2 also has the lowest AIC and BIC values.
Finally, Figure 2 is a screen shot of the GUI, showing
drift rate as a function of condition. The error bars are in
this case based on the Fisher information matrix (which
is derived from the Hessian matrix). If bootstrap analyses
had been requested, bootstrap confidence intervals would
be shown.

suMMaRy

In this article, we have presented DMAT, an applica-
tion with a low ease-of-use threshold that enables fitting
and evaluation of the Ratcliff diffusion model. We briefly
described the model and the basic matrix methods used
in general linear modeling, which we have extended for
use in diffusion models. With two didactic examples, we
demonstrated the use of DMAT.

auThoR noTe

This research was supported by Grants GOA/00/02, GOA/2005/04,
and IUAP P5/24 from the Research Council of the University of Leu-

Table 4
output of the qtable function in example 2

Deviance d-Deviance df d-df AICc BIC p

20206.10 NaN 6 NaN 20218.12 20255.24 NaN
16118.72 4087.38 8 2 16134.75 16184.23 0.00
16101.73 16.99 20 12 16141.95 16265.51 0.15

Note—Deviance is the badness-of-fit measure, d-Deviance is the difference
between consecutive models, df is the number of parameters in each model,
d-df is the difference with the previous model, AICc is the small-sample Akaike
information criterion (Hurvich & Tsai, 1989), BIC is the Bayesian information
criterion, and p is the significance of the difference between consecutive mod-
els (based on a χ2 test of d-Deviance with d-df degrees of freedom).

figure 2. a screen shot from DMaT. Parameter estimation is complete, and the user can browse through the output.
The graph shows estimated drift rates (and error bars of one standard error, obtained from the hessian matrix) as a
function of condition, as obtained under the model that allows deviation from the linear design.

dMaT PriMer 67

Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the
diffusion model: Approaches to dealing with contaminant reaction
times and parameter variability. Psychonomic Bulletin & Review,
9, 438-481.

Ratcliff, R., Van Zandt, T., & McKoon, G. (1999). Connectionist
and diffusion models of reaction time. Psychological Review, 106,
261-300.

Strayer, D., & Kramer, A. (1994). Strategies and automaticity:
I. Basic findings and conceptual framework. Journal of Experimental
Psychology: Learning, Memory, & Cognition, 20, 318-341.

Thapar, A., Ratcliff, R., & McKoon, G. (2003). A diffusion model
analysis of the effects of aging on letter discrimination. Psychology
& Aging, 18, 415-429.

Tuerlinckx, F. (2004). The efficient computation of the distribution
function of the diffusion process. Behavior Research Methods, Instru-
ments, & Computers, 36, 702-716.

Tuerlinckx, F., Maris, E., Ratcliff, R., & De Boeck, P. (2001). A
comparison of four methods for simulating the diffusion process. Be-
havior Research Methods, Instruments, & Computers, 33, 443-456.

Vandekerckhove, J., & Tuerlinckx, F. (2007a). Diffusion Model
Analysis Toolbox [Software and manual]. Retrieved from ppw
.kuleuven.be/okp/dmatoolbox.

Vandekerckhove, J., & Tuerlinckx, F. (2007b). Fitting the Ratcliff
diffusion model to experimental data. Psychonomic Bulletin & Re-
view, 14, 1011-1026.

Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the param-
eters of the diffusion model: An empirical validation. Memory & Cog-
nition, 32, 1206-1220.

Voss, A., & Voss, J. (2007). Fast-dm: A free program for efficient diffu-
sion model analysis. Behavior Research Methods, 39, 767-775.

Voss, A., & Voss, J. (in press). A fast numerical algorithm for the es-
timation of diffusion-model parameters. Journal of Mathematical
Psychology.

Wagenmakers, E.-J., van der Maas, H., & Grasman, R. (2007). An
EZ-diffusion model for response time and accuracy. Psychonomic
Bulletin & Review, 14, 3-22.

noTe

1. Actually, we have built some shortcuts into the DMAT GUI that
make this example even easier. Load the data, click “Predefined,” select
“No effects” and “Effect on v only,” and click “Add” and then “Run.”

ven. The authors thank Eric-Jan Wagenmakers and Andrew Heathcote
for insightful comments on an earlier draft. Correspondence related to
this article may be sent to J. Vandekerckhove, Research Group Quan-
titative Psychology and Personality Psychology, Department of Psy-
chology, Tiensestraat 102, B-3000 Leuven, Belgium (e-mail: joachim
.vandekerck hove@psy.kuleuven.be).

RefeRences

Brown, S., & Heathcote, A. (2003). QMLE: Fast, robust, and efficient
estimation of distribution functions based on quantiles. Behavior Re-
search Methods, Instruments, & Computers, 35, 485-492.

Heathcote, A., & Brown, S. (2004). Reply to Speckman and Rouder: A
theoretical basis for QML. Psychonomic Bulletin & Review, 11, 577.

Heathcote, A., Brown, S., & Mewhort, D. (2002). Quantile maxi-
mum likelihood estimation of response time distributions. Psy-
chonomic Bulletin & Review, 9, 394-401.

Hurvich, C., & Tsai, C.-L. (1989). Regression and time series model
selection in small samples. Biometrika, 76, 297-307.

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Re-
view, 85, 59-108.

Ratcliff, R. (1981). A theory of order relations in perceptual matching.
Psychological Review, 88, 552-572.

Ratcliff, R. (1987). More on the speed and accuracy of positive and
negative responses. Psychological Review, 94, 277-280.

Ratcliff, R. (1988). Continuous versus discrete information process-
ing: Modeling the accumulation of partial information. Psychological
Review, 95, 238-255.

Ratcliff, R. (2002). A diffusion model account of reaction time and
accuracy in a brightness discrimination task: Fitting real data and fail-
ing to fit fake but plausible data. Psychonomic Bulletin & Review, 9,
278-291.

Ratcliff, R., Gomez, P., & McKoon, G. (2004). A diffusion model ac-
count of the lexical-decision task. Psychological Review, 111, 159-182.

Ratcliff, R., & Rouder, J. (1998). Modeling response times for two-
choice decisions. Psychological Science, 9, 347-356.

Ratcliff, R., & Rouder, J. (2000). A diffusion model account of
masking in letter identification. Journal of Experimental Psychology:
Human Perception & Performance, 26, 127-140.

Ratcliff, R., Thapar, A., & McKoon, G. (2004). A diffusion model
analysis of the effects of aging on recognition memory. Journal of
Memory & Language, 50, 408-424.

(Continued on next page)

68 VandekerckhoVe and Tuerlinckx

aPPenDix a
annotated code for Generating Random Data in DMaT

(1) Define a Parameter set from Which to sample
Parameter sets are matrices with one row for each condition, and one column for each parameter. The param-

eters are a, Ter, eta, z, sz, st, v:

parameter_set = [.16 .30 .08 .12 .02 .10 .40
 .16 .30 .08 .12 .02 .10 .20
 .16 .30 .08 .12 .02 .10 .00];

(2) Define simulation constants
There are two more constants that the simulation will need. First is the number of data points in each condi-

tion, N. Note that you can choose between providing N as a scalar, like here, or as a vector with one number
for each condition, for instance, N = [500 500 1000]. Second, since the simulator makes use of random number
generators, a “seed” is needed. If you provide none, a seed is selected with the help of the system clock. For
reproducibility, we choose a seed here:

N = 1000;
seed = 0;

(3) simulate Data
With the multisimul function:

 data = multisimul(parameter_set,N,seed);
 disp(data(1:10,:))

 3.0000 1.0000 0.3788
 3.0000 0 0.5991
 3.0000 1.0000 0.4741
 1.0000 1.0000 0.4921
 2.0000 1.0000 0.6802
 3.0000 1.0000 0.4296
 3.0000 0 0.7973
 3.0000 1.0000 0.4302
 2.0000 1.0000 0.7328
 3.0000 1.0000 0.3282

A data set for DMAT usually has three columns, the first indicating condition, the second response, and the
third RT (in seconds).

aPPenDix B
annotated code for fitting Two nested Diffusion Models in DMaT

(1) Prepare the options structure
Get the default options structure:

 options = multiestv4

options =
 DesignMatrix: {'1' '1' '1' '1' '1' '1' '1'}
 Display: 'off'
 EWMA: [1x1 struct]
 EstimationMethodScalar: 5
 FixedBinEdges: [2x5 double]
 FixedValues: []
 Guess: []
 GuessMethodScalar: 1
 LongSimplexRuns: 1
 MaxIter: 5000
 Name: 'No name given'
 NoFitting: 0
 NonparametricBootstrap: 0
 ObjectiveDecimals: 7
 OutlierMax: []
 OutlierMin: []
 OutlierTreatment: 'None'

dMaT PriMer 69

 ParameterDecimals: 7
 ParametricBootstrap: 0
 Percentiles: [2x5 double]
 ShortSimplexRuns: 3
 SpecificBias: []

(2) copy it, Because We Want to fit More Than one Model

options = repmat(options,2,1);

(3) Prepare the Design Matrix for each Model
In Model 1, all parameters are kept equal across conditions. In Model 2, drift rate is allowed to vary freely. To

facilitate estimation and to make sure the qtable function will yield correct p values, we put the more restrictive
model first and the less restrictive one second.

O = ones(3,1);
I = eye(3);
design_matrix1 = {O,O,O,O,O,O,O,O,O};
design_matrix2 = {O,O,O,O,O,O,I,O,O};

(4) insert the Design Matrices into the options structure

options(1).DesignMatrix = design_matrix1;
options(1).Name = 'No effect';
options(2).DesignMatrix = design_matrix2;
options(2).Name = 'Effect on v only';

(5) invoke DMaT
Use the multiestv4 function to get parameter estimates:

 output = multiestv4(data,options);

 Guess : 13344.70746657 (19-Dec-2006 15:59:48)
 Simplex 1: 11711.68971805 (19-Dec-2006 15:59:52)
 Simplex 2: 11684.35157724 (19-Dec-2006 15:59:56)
 Simplex 3: 11684.34775252 (19-Dec-2006 16:00:01)
 Simplex 4: 11684.34774483 (19-Dec-2006 16:00:10)
 Final loss: 11684.34774483 (19-Dec-2006 16:00:13)

 The recovered sZ parameters are suspect.
 Trying again.

 Guess : 11730.20083810 (19-Dec-2006 16:00:13)
 Simplex 1: 11685.51405192 (19-Dec-2006 16:00:17)
 Simplex 2: 11684.35679628 (19-Dec-2006 16:00:22)
 Simplex 3: 11684.34780944 (19-Dec-2006 16:00:27)
 Simplex 4: 11684.34774486 (19-Dec-2006 16:00:37)
 Final loss: 11684.34774486 (19-Dec-2006 16:00:39)

 The last convergence point was still a suspect result.
 Returning to the best point found and giving up.

 Guess : 11684.34774483 (19-Dec-2006 16:00:40)
 Simplex 1: 10826.07763855 (19-Dec-2006 16:00:45)
 Simplex 2: 10748.37849361 (19-Dec-2006 16:00:50)
 Simplex 3: 10740.89192211 (19-Dec-2006 16:00:54)
 Simplex 4: 10739.06920367 (19-Dec-2006 16:01:07)
 Final loss: 10739.06920367 (19-Dec-2006 16:01:10)

 The recovered sZ parameters are suspect.
 Trying again.

 Guess : 10763.99776143 (19-Dec-2006 16:01:10)
 Simplex 1: 10739.20957907 (19-Dec-2006 16:01:15)
 Simplex 2: 10739.03689509 (19-Dec-2006 16:01:20)

aPPenDix B (continued)

70 VandekerckhoVe and Tuerlinckx

 Simplex 3: 10739.03193134 (19-Dec-2006 16:01:25)
 Simplex 4: 10739.03044311 (19-Dec-2006 16:01:39)
 Final loss: 10739.03044311 (19-Dec-2006 16:01:42)

(6) Process Results
Use the qtable function to get a concise summary of the model queue:

qtable(output)

 Deviance d-Deviance df d-df AICc BIC p

 11684.3477 NaN 7 NaN 11698.3758 11740.3923 NaN
 10739.0304 945.3173 9 2 10757.0786 10811.0878 0.00000

aPPenDix B (continued)

aPPenDix c
annotated code for Generating the Data set and estimating the Models Described in example 2

simulating the Data

(1) Define a Parameter set from Which to sample
We will define a more complex design for this example. We will suppose eight different conditions. Conditions

1–4 contain an accuracy instruction, and 5–8 contain a speed instruction. A second manipulation, within these
groups, again pertains to the quality of the stimulus. This time, however, it is a continuous variable that takes the
values .2 .8 –.4 .6. The following parameter set is roughly what we would expect from such an experiment:

parameter_set = [.24 .30 .08 .12 .02 .10 .15
 .24 .30 .08 .12 .02 .10 .30
 .24 .30 .08 .12 .02 .10 .00
 .24 .30 .08 .12 .02 .10 .25
 .08 .30 .08 .04 .02 .10 .15
 .08 .30 .08 .04 .02 .10 .30
 .08 .30 .08 .04 .02 .10 .00
 .08 .30 .08 .04 .02 .10 .25];

(2) Define simulation constants
Let’s say that the number of data points per condition wasn’t equal here:

N = [470 440 500 450 430 460 400 450];
seed = 0;

(3) simulate Data

 data = multisimul(parameter_set,N,seed);
 disp(data(1:10,:))

 4.0000 1.0000 0.6167
 2.0000 1.0000 0.8900
 7.0000 1.0000 0.4017
 6.0000 1.0000 0.5786
 3.0000 0 1.0389
 6.0000 1.0000 0.4326
 7.0000 0 0.3262
 1.0000 1.0000 0.4725
 3.0000 0 1.5550
 2.0000 1.0000 0.5454

fitting the Model

(1) Prepare the options structure
Get default options structure.

options = multiestv4;

dMaT PriMer 71

(2) copy it, Because We Want to fit More Than one Model

options = repmat(options,3,1);

(3) adapt all of the options structures at once to change some settings
We want to use a percentile-based method instead of a fixed-bins method. (The deal function changes all

fields with a given name in an array of structures simultaneously. Note the required use of [] on the left-hand
side here.)

[options.EstimationMethodScalar] = deal(6);

Setting this field to 6 indicates that we want a multinomial likelihood estimation based on percentiles (quan-
tile probability products estimation). A table with possible values for EstimationMethodScalar can be requested
with the emstable function.

Since we indicated that we want to estimate on the basis of percentiles, we need to indicate which percentiles
to use. Classically, percentiles 10, 30, 50, 70, and 90 are used, but adding some smaller values increases recovery
of the left slope of the RT distribution.

[options.Percentiles] = deal([1 2 5 10 30 50 70 90
 1 2 5 10 30 50 70 90]);

We also don’t want to estimate the starting point, but to fix it to exactly half of the boundary separation, in
all conditions:

[options.SpecificBias] = deal([.5 .5 .5 .5 .5 .5 .5 .5]);

(4) Prepare the Design Matrix for each Model
In Model 1, all parameters are kept equal across conditions. However, we do need to make a change in the

design matrices. Since we supplied an extra restriction (namely, that all z = a/2), we need to remove the design
matrix restriction to avoid a conflict. Thus:

options(1).DesignMatrix = {'1','1','1',[],'1','1','1','1','1'};
options(1).Name = ‘No effects’;

Note also that here we make use of two shortcuts built into the code: Supplying ‘1’ instead of a design ma-
trix restricts that parameter to being equal across conditions. Supplying an empty matrix ([]) allows it to vary
without restriction.

In Model 2, drift rate is allowed to vary as a linear function of the covariate, and boundary separation is al-
lowed to vary between the two manipulations.

 v_covariate = [.2 .8 -.4 .6 .2 .8 -.4 .6]';
 v_intercept = ones(8,1);
 v_dm = [v_intercept v_covariate]

v_dm =
 1.0000 0.2000
 1.0000 0.8000
 1.0000 -0.4000
 1.0000 0.6000
 1.0000 0.2000
 1.0000 0.8000
 1.0000 -0.4000
 1.0000 0.6000

 a_dm = [ones(4,1) zeros(4,1);zeros(4,1) ones(4,1)];
 options(2).DesignMatrix = {a_dm,'1','1',[],'1','1',v_dm,'1','1'};
 options(2).Name = ‘Linear regression’;

In Model 3, drift rate and boundary separation are allowed to vary freely across conditions (to check for
deviations from the design).

options(3).DesignMatrix = {[],'1','1',[],'1','1',[],'1','1'};
options(3).Name = 'Deviation from linearity';

(5) invoke DMaT
Use the multiestv4 function to get parameter estimates.

 output = multiestv4(data,options);

aPPenDix c (continued)

72 VandekerckhoVe and Tuerlinckx

Warning: Automatically generated guess was outside parameter space. Gen-
erating new guess.

 Guess : 21044.35257323 (19-Dec-2006 16:01:52)
 Simplex 1: 20241.99941073 (19-Dec-2006 16:02:09)
 Simplex 2: 20225.22102745 (19-Dec-2006 16:02:31)
 Simplex 3: 20225.20412897 (19-Dec-2006 16:02:54)
 Simplex 4: 20206.10358754 (19-Dec-2006 16:05:58)
 Final loss: 20206.10358754 (19-Dec-2006 16:06:21)

Warning: Hessian is not of full rank.
Warning: Hessian is not positive definite.

 Guess : 20206.10358755 (19-Dec-2006 16:06:21)
 Simplex 1: 17656.05744417 (19-Dec-2006 16:06:46)
 Simplex 2: 17335.69652287 (19-Dec-2006 16:07:04)
 Simplex 3: 17331.95642866 (19-Dec-2006 16:07:21)
 Simplex 4: 17331.91079995 (19-Dec-2006 16:07:47)
 Final loss: 16118.72142640 (19-Dec-2006 16:08:24)

 Guess : 16118.72142640 (19-Dec-2006 16:08:24)
 Simplex 1: 16103.99735918 (19-Dec-2006 16:08:39)
 Simplex 2: 16103.65078687 (19-Dec-2006 16:08:56)
 Simplex 3: 16103.41232557 (19-Dec-2006 16:09:12)
 Simplex 4: 16101.79752097 (19-Dec-2006 16:14:21)
 Final loss: 16101.73477408 (19-Dec-2006 16:16:26)

(6) Display summary output

 qtable(output)

 Deviance d-Deviance df d-df AICc BIC p

 20206.1036 NaN 6 NaN 20218.1203 20255.2357 NaN
 16118.7214 4087.3822 8 2 16134.7526 16184.2309 0.00000
 16101.7348 16.9867 20 12 16141.9471 16265.5086 0.15010

Users should be warned that using the QPP statistic for model inference may not always be appropriate (see
Vandekerckhove & Tuerlinckx, 2007b).

(Manuscript received December 21, 2006;
revision accepted for publication March 17, 2007.)

aPPenDix c (continued)

