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Abstract

Choice reaction times (RTs) are often used as a proxy measure of typicality

in semantic categorization studies. However, other item properties have been

linked to choice RTs as well. We apply a tailored process model of choice RT to

a speeded semantic categorization task in order to deconfound different sources

of variability in RT. Our model is based on a diffusion model of choice RT, ex-

tended to include crossed random effects (of items and participants). This model

retains the interesting process interpretation of the diffusion model’s parame-

ters, but it can be applied to choice RTs even in the case where there are few

or no repeated measurements of each participant-item combination. Different

aspects of the response process are then linked to different types of item prop-

erties. A typicality measure turns out to predict the rate of information uptake,

while a lexicographic measure predicts the stimulus encoding time. Accessibility

measures cannot reliably predict any component of the decision process.
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1. Introduction

In speeded semantic categorization tasks, participants are asked to verify

whether a lexical item is a true member of some semantic category, and to do

so as fast and as accurately as possible. Such tasks have been a primary tool

in the study of semantic memory for decades. It is commonly believed that the

difference in the time it takes for a participant to determine that apple1 is a

member of the category fruit and the time it takes for them to determine the

same of lime may reveal important aspects of the representation of the category

fruit (McCloskey and Glucksberg, 1979; Smith et al., 1974).

Historically, various views on the organization of semantic memory have

succeeded one another. The types of variables that have been considered as

determinants of categorization time differences offer some insight into these dif-

ferent views. In the original work by Landauer and Freedman (1968) and by

Collins and Quillian (1970), two factors were considered important determi-

nants of categorization time: the frequency with which lexical items appear in

written discourse, and the size of the categories to which these items (suppos-

edly) belong. In later work, researchers turned to associative accounts of the

time needed to verify or discard category membership. For example, Wilkins

(1971) argued that the number of times an item has been associated with the

category in the past is an important determinant of the item’s categorization

time, while Loftus (1973) also made the argument for the importance of the

reverse association. The number of times a category has been associated with

an item should allow one to predict how long a participant will take to establish

the set inclusion relationship between the item and the category. However, it

wasn’t until Wilkins’ production frequency or instance dominance predictor and

1Throughout, we will typeset lexical entries in italics and categories in boldface italics.
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Loftus’ category dominance predictor were complemented by measures of cate-

gory representativeness that the speeded semantic categorization task achieved

its prominence (Larochelle and Pineau, 1994). To date, the task remains best

known for demonstrating that items that are representative or typical of a cat-

egory are more quickly endorsed than category members that are not (Rips

et al., 1973; Rosch, 1973). Since the work by Glass and Meany (1978) and by

McCloskey (1980) it is now also generally recognized that whenever measures

of typicality have an effect, measures of familiarity are likely to be of influence

as well.

As a result of these developments, researchers who nowadays are interested

in studying speeded semantic categorization decisions have no choice but to

include a vast number of covariates to account for categorization time differ-

ences. This is especially true in light of the multiple methodological variations

the task affords (i.e., presentation order of item and category, choice of nega-

tive instances, etc.) that prevent any single contributor to categorization time

variability from emerging (Casey, 1992). The multitude of covariates that have

an impact on semantic categorization time has evoked quite different attitudes

towards the task. Some choose to rally against it (e.g., Kintsch, 1980), arguing

that the varying findings indicate that existing accounts of the task are under-

specified and lack the ability to reveal anything meaningful about the structure

of semantic memory. Others see it as an opportunity to investigate the coher-

ence and interaction among the theoretical constructs thought to underlie the

various covariates. They have introduced methodological variants of the task

and employed multiple regression techniques to disentangle the contributions

of the covariates to the resulting categorization time differences (Casey, 1992;

Chumbley, 1986; Hampton, 1997; Larochelle and Pineau, 1994; Larochelle et al.,

2000).

The approach taken in the present paper is informed by both these atti-

tudes towards the speeded semantic categorization task—we believe that current

methods may be too weak, and that an in-depth investigation should account

for different covariates and their interplay. In the next section, we will argue
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that clearly specified cognitive process models are interesting tools for extract-

ing information from data that are known to result from processes with multiple

sources of variability.

1.1. Process models and cognitive psychometrics

The statistical methods we apply in the present improve upon the classical

methods in two distinct ways. Firstly, we will apply a process model that is

inspired from cognitive psychology. Using a process model allows us to express

the data with a concise set of parameters that have interesting psychological

interpretations. Secondly, we will apply a hierarchical model in order to allow

for differences between persons and between items. That item differences should

not be ignored was argued very strongly by Clark (1973) and by Coleman (1964),

and the detrimental effects of averaging over persons have been demonstrated

by, among others, Estes (1956, 2002) and Heathcote et al. (2000). Viewing the

model as a whole, each data point in the set will be conceptualized as a single

realization of a specific response process, whose parameters are (at each trial) a

unique combination of person-specific and item-specific parameters.

As discussed in the previous section, several item covariates have been shown

to covary with semantic categorization RT to some extent. The standard meth-

ods for demonstrating these relationships have typically involved general linear

models (GLMs). That is, they have focused predominantly on the mean RT

(often after log-transformation). Others have focused on accuracy scores, or

performed person-specific regressions (and then averaged the results). However,

there have been repeated calls for extracting more of the information that is

available from RTs (e.g., Heathcote et al., 1991). An alternative for this stan-

dard type of analysis is to focus rather on the response process that governs

the participants’ behavior (or their interactions with the items). Process mod-

eling is very similar to usual statistical modeling in that a set of assumptions

is made about regularities that are presumed to be present in the data, a set

of parameters is defined that together give rise to a certain range of predicted

distributions of data, and then from the empirical distributions the parameters

4
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are estimated using these predictions as a template.

For the general linear model, the assumptions are well-known: (1) the crite-

rion is in reality a linear combination of the predictors, (2) any deviation from

this pattern is noise, which follows a normal distribution with mean zero, and (3)

the variance of the noise distribution is constant and independent of the predic-

tors. These assumptions might seem quite strict, but they provide mathematical

convenience and are familiar—it is quite easy to estimate the parameters of this

model with readily available (‘off-the-shelf’) methods. In process modeling, the

genesis of a model works from a different direction: assumptions about the pro-

cess are made first (based on theoretical insights and prior knowledge about the

world) and mathematical convenience is considered only after that. Of course,

convenience decisions still come into play, but typically the plausibility of the

process and the interpretability of its parameters are paramount. In the artifi-

cial category literature, process models already abound (e.g., Lamberts, 2000;

Nosofsky and Palmeri, 1997), but in the domain of natural language categories

they are largely unexplored.

A major advantage of this approach is that it occasionally allows us to specify

different, possibly independent, components of a process that together generate

the response behavior in an experimental task. In the specific case of a choice

response task (like the semantic categorization task) it makes sense to assume

that there is more than one factor at work in the response process at any given

trial. In the model that we will use (a hierarchical diffusion model; see below),

separate parameters are included for a person’s ability in the task (i.e., their

propensity to give a correct response, irrespective of the item properties), but

also of their carefulness and the speed with which they are able to execute a

motor response—all parameters that can reasonably be taken to influence the

eventual RT. Additionally, there are separate parameters for the degree to which

an item evokes a correct2 response, and how long it takes to encode it before

2It should be noted here that the accuracy of a categorization response can be somewhat

subjective. For example, is a tomato a vegetable or a fruit? Is a raft a vehicle? For the
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a semantic decision is made. This allows for an analysis with a level of detail

that is not possible with conventional methods like the general linear model.

When applying such a cognitive process model, we will explicitly allow for

individual differences (both between participants and between items) by em-

bedding the model in a hierarchical structure. We will in other words assume

that while individuals (or items) are not identical in their cognitive process pa-

rameters, they are all members of some superordinate population. In this way,

hierarchical models are a compromise between assuming that all participants

are interchangeable (Batchelder, 2007) and can hence be averaged over (possi-

bly leading to averaging artifacts; Estes, 1956, 2002; Heathcote et al., 2000), and

assuming that they share no commonality at all. This hierarchical structure is

a second (but equally important) way in which our method improves upon the

traditional approach. As an additional feature of hierarchical models, we will

be able to (attempt to) explain part of the observed variance in parameters,

through the use of covariate information (De Boeck and Wilson, 2004). Us-

ing a process model in this fashion is sometimes called cognitive psychometrics

(Batchelder, 2007; Batchelder and Riefer, 1999).

1.2. Paper outline

The outline of the rest of the paper is as follows. In the next section, we

will briefly describe one data set (due to De Deyne, 2008) that contains speeded

semantic categorization data. Then we describe the so-called Leuven Natural

Concept Database (LNCD; De Deyne et al., 2008) which contains many possible

covariates of the categorization time differences observed by De Deyne (2008).

Then we will analyze this joint data set using the classical approach and one

extension of it (multiple linear regression with crossed random effects), but the

results will turn out to be inconsistent and unclear. In the section after that,

purposes of the present paper “true category membership” was determined a-priori by the

experimenters, but was kept uniform across the different data sets (see section Data sets for

more details).

6
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we will describe the hierarchical diffusion models (HDM) statistical framework

(Vandekerckhove et al., 2009) which we believe is well suited for the analysis of

this coupled data set. Then we perform this analysis and discuss the results. We

conclude with a discussion of the application of process models for the purpose

of disentangling different sources of variability in choice RTs and implications

for semantic categorization studies.

2. Data sets

2.1. Speeded semantic categorization data

The semantic categorization data are due to De Deyne (2008). The partici-

pants were eight male and thirty-six female students of the University of Leuven,

who were paid the equivalent of $10 per hour for their participation.

Each of these participants provided speeded semantic categorization deci-

sions for each of eight categories (birds, fish, insects, mammals, musical

instruments, reptiles, tools, and vehicles). All items that were listed as

exemplars of these categories in the LNCD served as targets in the experiment.

An exemplar generation task that was described in Ruts et al. (2004) informed

the construction of these lists. This resulted in the inclusion of some items that

could not be considered true category members (e.g., dolphin as an exemplar

of fish). De Deyne (2008) decided not to retain these items as targets for his

semantic categorization experiment. In addition, he excluded all items that

were composed of more than one word (e.g., adjustable spanner). For each cate-

gory the resulting targets were complemented by an equal number of distractors.

For the natural kind categories (birds, fish, insects, mammals, and reptiles)

related items from the domain of animals constituted the distractors (e.g., platy-

pus, lobster, amoeba, seahorse, and octopus for the respective categories). For

the artefact categories (musical instruments, tools, and vehicles) related

artefacts served the part (e.g., microphone, camera, and container for the re-

spective categories).

7
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All participants provided categorization decisions for all items. Instructions

stressed both speed and accuracy. Following a recommendation by Hampton

(1997), De Deyne (2008) opted for a blocked presentation order of categories.

At the onset of a block, participants were informed about the category that

would have to be referenced by displaying the category label for 3500ms on

the screen. Those targets and distractors that were assigned to that particular

category were then presented one by one in a randomized order. Each trial

consisted of the presentation of a mask (500ms), a fixation point (500ms), a

blank (500ms), and the stimulus word. The stimulus word was presented for

a maximum of 1800ms or until the participant responded by pressing one of

two buttons on a response-box. A blank screen (800ms) separated consecutive

trials. Presenting the items one at a time, blocked per category, should remove

the random variance in RT that would occur if a new category label had to be

read on each trial.

Participants were familiarized with the procedure through the completion of

a practice block. They then completed the experimental blocks in a randomized

order.

2.2. The Leuven Natural Concept Database

The introduction to the semantic categorization task already provided a brief

overview of the variables that have been found to have an impact on participants’

performance. They are of a diverse nature, including measures that pertain to

semantic categories’ internal structure (e.g., Typicality), the availability of the

categories’ items (e.g., Word Frequency and Familiarity) and the co-occurrence

of category label and category items in the categories’ learning history (e.g.,

Category Dominance and Production Frequency). In order to disentangle the

contributions of these variables to task performance it is crucial that they are

collected within a homogeneous population, since cultural or regional differences

are known to affect the pattern of intercorrelations (Hampton and Gardiner,

1983; Larochelle and Pineau, 1994). The data in the LNCD (De Deyne et al.,

2008) meet this condition, as all norms were collected within a few years’ time

8
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with University of Leuven students. They are therefore well suited for the

endeavor at hand: the semantic categorization data collection by De Deyne

(2008) took place in the same student population that provided the normative

data and all target category members were selected from the LNCD. Hence, the

available data allow an investigation of the differences that arise among true

category members in speeded semantic categorization.

Following Hampton (1997), we focused on five covariates to account for these

differences: Typicality, Familiarity, Word Frequency, Production Frequency, and

Word Length. All five variables are included in the LNCD and below we will

briefly remind the reader how they were collected. Although we agree with

Hampton that these variables are generally of interest in the speeded semantic

categorization literature, the choice for this set of covariates should not be taken

to imply a strong theoretical commitment by the authors. Had the LNCD

included a measure of category dominance, for instance, then we would have

included it in our analyses. Nor should the absence of variables like imageability

or age of acquisition in our analyses be considered as a stance against their role

in semantic processing. Our choice for the named five variables merely reflects

the aspiration of demonstrating an approach that we believe to be valuable,

using a set of theoretically justified variables.

2.2.1. Typicality (T )

The representativeness of a category’s items can be assessed in a variety of

ways. One of them requires participants to indicate on a Likert-type scale how

typical each category item is of the category. Students who provided typicality

ratings for the LNCD, indicated on a scale ranging from 1 to 20 how typical

they found each category member to be (De Deyne et al., 2008).

2.2.2. Familiarity (F )

Familiarity was assessed in a similar way. Participating students stepped

through a list of category items, indicating on a five point Likert-type scale how

familiar they were with each of the items. A rating of 1 indicated that they had

9



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

never seen, heard, or used the word before. A score of 2 indicated that they had

seen, heard, or used the word just once or twice. A score of 3 indicated that

they had sometimes seen, heard, or used the word. A score of 4 indicated that

they had seen, heard, or used the word often. A score of 5, finally, indicated

that they had seen, heard, or used the word very often.

2.2.3. Word frequency (W )

A measure of item availability that is not based on participants’ judgements,

but on the frequency with which the item appears in written discourse, can also

be obtained from the LNCD (see also Steyvers, this issue). The reported word

frequencies in De Deyne et al. (2008) are the logarithmically transformed lemma

counts taken from the Dutch CELEX lexical database (Baayen et al., 1993).

2.2.4. Production frequency (P )

For each of the category members, the measure of production frequency that

is distributed with the LNCD tallies how many out of a total of 120 student

participants generated the member in response to the category label. For the

purposes of all following analyses, the production frequencies were incremented

by one and logarithmically transformed.

2.2.5. Word length (L)

The variable word length finally, contains the number of characters in each

category member. The effect of this lexicographic variable is usually of mi-

nor theoretical importance in accounts of semantic categorization and therefore

regularly overlooked (imprudently, our results suggest).

2.2.6. Covariate preprocessing

Each of the covariates was transformed to a standardized scale with mean

0 and standard deviation 0.1. The distractor items (i.e., items that were not

true members of the target category) were included in the analysis after the

standardization (i.e., their covariate scores were not used to compute the stan-

dard deviation of the covariate). For most covariates, we had no information

10
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regarding these distractors, and they were assigned a value of 0 accordingly.

Only for the variable Word Length (which is of course easy to obtain) were the

distractors given a value.

3. Regression analysis

We subjected the joint data set to a multiple linear regression. For the

present analysis, we removed all error responses and all responses that were

faster than 250ms or slower than 1800ms (which was the experimental cut-off).

Using the logarithm of RT as the criterion variable, and Typicality T , Length

L, Familiarity F , Word Frequency W , Production Frequency P , and category

membership C as predictors, the following regression model is obtained:

µ(i) = β0 + β1T(i) + β2L(i) + β3F(i) + β4W(i) + β5P(i) + β6C(i)

log(RT(pi)) ∼ N(µ(i), σ
2).

In this model, RT(pi) is the RT of person p (p = 1, . . . , 45) to item i (i, . . . , I),

µ(i) is the predicted value of log(RT(pi)), and σ2 is the unexplained variance.

Note again that since we only have covariate information for target items, all

covariates except Word Length L and Category Membership C take the value

0 for all distractor items.

The regression results are summarized in Table 1. We have immediately

performed inference on these results, and omitted all regression weights that

turned out to be not statistically significant. In this way, the table concisely

portrays the conclusions that would usually be drawn from the data with re-

spect to sign and significance. Unfortunately, inspection of Table 1 shows that

the picture is inconsistent with the results found in the literature, where the

Typicality measure was traditionally found to have a negative effect on RT (i.e.,

higher Typicality leads to shorter RTs; Rips et al., 1973; Rosch, 1973). In the

present data set this effect only surfaces in three out of eight categories. In two

categories RT increased with Typicality, and in the remaining three categories,

no effect can be discerned. The Length measure is the only one with effects

that are consistent across categories, but it only significantly increased RT in

11
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three categories. For Familiarity, Word Frequency, and Production Frequency,

the regression weights can take either sign, depending on categories.

Retaining error responses or not removing fast and slow responses affected

the pattern of significance, but in no case did a consistent pattern arise. Hence,

the classical analysis yields disappointing results.

Table 1: Classical linear regression. The signs of the regression weights whose p-value was

less then 0.05 are displayed, others are replaced by a dot.

Category T L F W P

birds · · · · –

fish · · + + ·

insects + + – · ·

mammals – · · · +

musical instruments – + + – +

reptiles + + · + ·

tools · · · · +

vehicles – · + · ·

4. Regression analysis with crossed random effects

In a second analysis, we include random effects in the regression analysis.

We include this extension of the typical multiple regression analysis in order

to focus our comparison on the application of a process model, rather than on

our addition of random effects. We used the same data preprocessing as in the

previous section, and obtain the following model:

µ(i) = β0 + β1T(i) + β2L(i) + β3F(i) + β4W(i)

+β5P(i) + β6C(i)

ψ(i) ∼ N(µ(i), σ
2
ψ)

χ(p) ∼ N(0, σ2
χ)

log(RT(pi)) ∼ N(ψ(i) + χ(p), σ
2).

12
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Table 2: Regression weights in the crossed-random effects regression model. The signs of the

regression weights whose 95% credibility intervals do not contain 0 are displayed, others are

replaced by a dot.

Category T L F W P

insects · · · · ·

musical instruments · + · · ·

reptiles · · · · ·

fish · · · · –

vehicles – · · – ·

birds · · · · ·

tools · · · · ·

mammals – · · · ·

Here, ψ(i) is the unique contribution of item i, while χ(p) is that of person

p. σ2
ψ and σ2

χ denote, respectively, the variability between items and between

persons. Averaged over semantic categories, σψ = 0.0631 and σχ = 0.1252.

The regression results are again summarized in Table 2, in the same way as

in the previous section. (With a difference being that we performed this analysis

in a Bayesian statistical framework and we no longer apply p-values, but 95%

credibility intervals instead.) Results of this second analysis are more consistent

than those of the previous, but dishearteningly few regression weights turn out

to differ from zero.

Again, changes in the preprocessing of the data do not meaningfully alter

the results. As in the previous section, the linear model yields disappointing

results. In the next section, we introduce a process model for choice RT with

which we will reanalyze the present data.
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5. Hierarchical diffusion models

In the domain of choice RTs, models based on the Wiener diffusion process

have garnered significant attention (Ratcliff, 1978; Ratcliff and Rouder, 1998;

Ratcliff and Smith, 2004). The Wiener diffusion model is one of the broad class

of sequential sampling models where, in this case, a single evidence counter

evolves over continuous time until it hits one of two absorbing boundaries. The

time to absorption is then related to the RT and which boundary was hit in-

dicates the response given. The model is considered particularly interesting

because the parameters that drive the process (explained below) have intuitive

interpretations relating to the sequential accumulation of information.

The increasing popularity of the diffusion model for choice RTs is likely due

in part to the interesting interpretations of its parameters on the one hand, and

the model’s ability to account for many empirically observed phenomena on the

other (for an excellent review of recent advances with the diffusion model, see

Wagenmakers, in press). It is unfortunate, therefore, that the possibilities for

application of the diffusion model have thus far been somewhat limited. For

example, as noted by Wagenmakers (in press), fitting the diffusion model to

empirical data requires a large number of observations. Importantly, with the

methods currently in practice (Ratcliff and Tuerlinckx, 2002; Vandekerckhove

and Tuerlinckx, 2007, 2008; Voss and Voss, 2007) it has typically been necessary

to have an appreciable number of data points in each cell of the experimental

design. That is, some independent replications under invariant conditions are

required in order to obtain parameter estimates.

As a result, applications of the diffusion model have largely been limited to

the analysis of “long” data sets (i.e., a typical psychophysical design where there

are few participants, and many repeated trials for each participant and in each

condition). A little-explored alternative would be to apply it to “wide” data

sets with many participants and few repeated measurements (like the present

semantic categorization data set; Hampton, 1997, recommends against repeating

items in such a paradigm). Such analyses are more challenging for several

14
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reasons. For example, if all participants are analyzed independently of one

another, the available number of data points on which the estimates would

be based would be very low. On the other hand, it would be unreasonable

to keep many parameters constant across individuals, making it impossible to

pool the data together (i.e., to allow sharing of information between data from

different participants). Other methods of pooling data across participants (or,

for that matter, items), such as quantile averaging (or vincentizing; Ratcliff,

1979; Rouder and Speckman, 2004), come with preconditions that may not

be met by the diffusion model (i.e., same location-scale family; Thomas and

Ross, 1980), they do not permit an investigation of individual differences (in

which we might be interested), and they cannot be applied in the case where

individual differences are expected on both the person and the item side (i.e.,

if both persons and items are random draws from their respective populations,

and there are no repetitions of person-by-item combination trials, then there

are no distributions left to combine). Taking the statistically principled route

of treating participants as random samples from a population (random effects

approach to individual differences) typically leads to models that rapidly become

quite complex mathematically.

Ratcliff (1978), Laming (1968), and Link and Heath (1975) have already

approached part of this problem with a random-effects strategy, by allowing

trial-to-trial variability in model parameters. Effectively, it is assumed that

some parameters change over time in that they are, at each point in time, a

random sample from some higher-order distribution. Parameters of this su-

perordinate distribution are then estimated in lieu of the trial-specific parame-

ters themselves. In practice, the variability in a parameter is implemented by

multiplying the model’s likelihood function with the likelihood function of the

trial-to-trial variability and then integrating over the parameter(s) that is (are)

allowed to vary (see Ratcliff and Tuerlinckx, 2002; Tuerlinckx, 2004). However,

this method is computationally laborious (involving multidimensional integra-

tions that have to be approximated by sums) and somewhat inflexible (in the

sense that the likelihood function has to be adapted in such a way that makes

15
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it difficult to write a universal but efficient algorithm).

Recently, Vandekerckhove et al. (2009) have approached this problem by

applying the flexibility of Bayesian hierarchical modeling (see, e.g. Rouder and

Lu, 2005; Rouder et al., 2005, 2007) for some examples of Bayesian hierarchical

modeling) to the Wiener diffusion process. This statistical framework (HDM)

can easily cope with many simultaneous random effects, and software for its

implementation is freely available (Vandekerckhove et al., 2009). A diffusion

model with crossed random effects can be applied to a data set where there are

no repeated observations in the item-by-participant cells of the experimental de-

sign. Such a design would be inaccessible to typical process model approaches,

but it is important in order to account for the random sampling scheme that is

normally used for lexical items in the semantic categorization paradigm (Clark,

1973; Coleman, 1964) as well as participants. This crossed random effects dif-

fusion model is especially suited for this case, because other methods that are

typically used for dealing with uncontrolled variability (e.g., vincentizing) can-

not cope with the crossed random effects design without repeated observations

of each cell of the design. Additionally, even if it were possible to have repeated

observations of the same person/item combinations (this is not recommended in

the semantic categorization context according to Hampton, 1997, but it might

be possible in other cases), then the vincentization procedure would only allow

us to account for the variability. It does not permit an easy quantification of the

variability, nor would it allow us to attempt to explain the variability through

external covariates (De Boeck and Wilson, 2004).

5.1. Diffusion models

At the basis of the Wiener diffusion model is a random walk process in

continuous time and with a continuous state space. The random walk has

two boundaries at values α (“upper”) and 0 (“lower”) and its step-size over a

discrete time period t is a randomly drawn value from N
(

δt, σ2t
)

(Feller, 1970).

By convention, σ = 0.1. After a number of steps, the process will hit one of its

boundaries (see Fig. 1). If δ, called the drift rate (or drift for short), is high

16
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in absolute value, then the number of steps will be small. The boundary that

was hit is then linked to the response given, and the first passage time (i.e., the

number of steps taken to reach the boundary) relates to the RT. By convention,

a hit at the upper boundary (α) is linked to correct responses and a hit at the

lower boundary (0) is an error.3 Of prime interest in the modeling of choice

reaction times are the proportions with which the absorbing boundaries are

hit, as well as the predicted first passage time distribution at either boundary.

The two parameters of this model (sometimes also called the drift diffusion

model) have straightforward interpretations. Boundary separation α relates

to the amount of information that is required to make a decision—that is, it

indicates the caution level of the decision system (in this case the participant).

We will therefore usually let α be different for different persons (but identical

within experimental blocks, because we do not expect people to adapt their

caution level in the middle of an experimental block). The second parameter,

drift rate δ, is the speed of information accumulation. We can easily suppose

this to depend both on the participant (who may be more or less able to rapidly

process information) and on the item (which may be relatively rich or poor in

information content).4

Typically two more parameters are introduced to the unbiased drift diffusion

model. Firstly, a bias parameter to indicate that the starting point of the

3This convention can be adapted. We could for example say that the upper boundary

indicates a category affirmation response and the lower is connected to a category negation.

However, the interpretation of the parameters would then change: a high drift rate would no

longer evoke a correct response, but rather the category affirmation response, whether correct

or not.
4In principle, it would also be possible that some participants have a better affinity with

some items, resulting in a person-by-item interaction. Such an interaction could be most

interesting when, for example, comparing groups of participants with different levels of expe-

rience with a certain semantic category (e.g., comparing ichthyologists with laymen in their

categorization performance of fish). However, including a person-specific interaction would

require more than one replication of each person-by-item combination, which the present data

set does not offer.
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Correct boundary

Error boundary
0

α

αβ
τ

Sample Path

d(t
i
)

δ

Figure 1: A graphical illustration of the Wiener diffusion model.

process may be closer to 0 or to α. This parameter is β ∈ [0, 1], so that the

starting value of the process is exactly αβ. Secondly, a shift parameter τ is

added to represent RT components that are not part of the decision time (e.g.,

encoding the stimulus and executing the motor response). The nondecision time

is assumed to be stochastically independent from the decision time. The joint

probability density of the RT and accuracy (i.e., the Wiener likelihood function,

or its probability density function, PDF) is given in Tuerlinckx (2004), and

we denote it with WX,T (x, t|α, τ, β, δ), where the random variables X and T

represent the response given and the response latency, respectively. Instances

of X and T will be denoted as x and t.

5.2. Hierarchical extension

In a hierarchical diffusion model (HDM; Vandekerckhove et al., 2009), the

four parameters that drive the response process are considered random draws

from some partly specified distribution (Rouder et al., 2005) that may be subject

to many different influences. For example, it may be assumed that the drift rate

δ(i) of the response process at trial i is a random draw from a normal distribution

18
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with mean ν and standard deviation η:

δ(i) ∼ N
(

ν, η2
)

.

The parameters of this distribution can in turn be considered random draws

from some higher-order distribution, or they may be seen as some fixed function

of other parameters or of data. The multitude of combinations that are possible

make the HDM framework an exceedingly flexible method for the analysis of

two-choice RT data.

5.3. Bayesian implementation

Obtaining parameter estimates in such a flexible context would be quite

challenging in general. Finding the maximum-likelihood parameter estimates

for a random-effects diffusion model would require repeated computations of

a multidimensional integral over the (already nontrivial) Wiener distribution.

However, the inclusion of randomly varying parameters and integrating over

their distributions is the basic modus operandi in Bayesian statistics. Hence,

casting the HDM in a Bayesian statistical framework (bulding upon Vandeker-

ckhove et al., 2008) allows us to apply the model easily. In the next section, we

will specify a specially-tailored HDM, which we will then apply to the semantic

recognition data.

6. Analyzing the semantic recognition data

6.1. Model assumptions

Formally speaking, a statistical model is little more than a set of assumptions

regarding structure that is present in the data. We discern five different types

of assumptions in the present model, which we describe in turn. We will apply

this model to each category separately.

6.1.1. The measurement model

At the most basic level, our assumption is that each data point is generated

by a diffusion process whose parameters may differ between persons and/or
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items (i.e., words). We have chosen to allow boundary separation α to differ

between persons p, while nondecision time τ and drift rate δ may be different for

each item-by-person combination pi. Since we do not want to assume that par-

ticipants have an a-priori bias for the correct or erroneous responses5, we fix the

bias β to 0.5 for the remainder of this presentation. Formally, the measurement

model is written as follows:

(t(pi), x(pi)) ∼ W (α(p), β, τ(pi), δ(pi)).

This gives the expected distribution of data point (t(pi), x(pi)) (for person p on

item i) given all the relevant parameters. W is the Wiener PDF. Note that, as

mentioned in an earlier section, we do not let boundary separation α depend on

items, so it does not receive an index i.

6.1.2. Trial-to-trial variability

Parameters τ and δ are assumed to vary both between persons and between

items (and hence from trial to trial). For this random variability, we assume

a normal distribution, which is the most common assumption in hierarchical

modeling (e.g., De Boeck and Wilson, 2004) and we see no reason to deviate from

it here.6 The normal also serves as a useful first approximation. In both cases,

we allow the mean of the trial-to-trial distribution to depend on both persons

and items. The dependence on persons is simply to allow for interindividual

differences (which we believe exist), but the dependence on items is crucial in

order to explain interitem differences with the LNCD covariates. Formally:

δ(pi) ∼ N(ν(pi), η
2
(p))

τ(pi) ∼ N(θ(pi), φ
2
(p)).

5We can safely assume this, since there were 50% targets and 50% distractors in each block

of the experiment.
6In principle, one could object that τ cannot follow a normal distribution, as it can never

be negative, but in practice the mean (θ) of this distribution has always turned out to be very

large compared to its standard deviation (φ), so that the mass of this distribution below zero

can be safely ignored.
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It can be seen that we also allow for the possibility of different trial-to-trial

variances between persons.

6.1.3. Independent item and person contributions

As explained in the previous section, we want items and persons to have in-

dependent effects on two different aspects of the decision process. For the drift

rate δ(pi), we call the item and participant contributions λ(i) and γ(p), respec-

tively. For the nondecision time τ(pi) we call them ψ(i) and χ(p). In both cases,

we assume these to be independent and additive (this is a typical construction

in psychometrics; for example the Rasch model uses the same assumption; De

Boeck and Wilson, 2004):

ν(pi) = γ(p) + λ(i)

θ(pi) = χ(p) + ψ(i).

6.1.4. Population distributions

Since both items and participants were random samples from a larger pop-

ulation, a random effects design is appropriate. Those parameters that have

a population distribution are thus assigned population-level parameters. Two

distributions over the item population must be defined: that of the item contri-

bution to the drift rate (i.e., λ(i)) and of the item contribution to the nondecision

time (i.e., ψ(i)). These components again get normal population distributions:

λ(i) ∼ N(µλ(i), σ
2
λ(i))

ψ(i) ∼ N(µψ(i), σ
2
ψ).

Note that, since we expect the drift rates for targets and items to be quite

different, we also allow their population variances to be different.

For reasons of model identifiability, the mean of one of the random compo-

nents must be constrained, so we set the mean of γ(p) and χ(p) to 0:

γ(p) ∼ N(0, σ2
γ)

χ(p) ∼ N(0, σ2
χ).
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Finally, we define a population distribution for the boundary separation α:

α(p) ∼ N(µα, σ
2
α).

6.1.5. Regression structure

We make most of the previous assumptions in order to account for the pos-

sibility of variation between persons or items. Until now, however, the model is

strictly descriptive (i.e., it does not include any external covariates that might

be employed to explain the variability that is observed). A final set of assump-

tions pertains to the relationship between the diffusion model parameters and

the LNCD. Following Hampton (1997), we include five covariates: Typicality

(T ), Word Length (L), Familiarity (F ), Word Frequency (W ), and Production

Frequency (P ). All of these covariates were standardized to have a mean of 0

and a standard deviation of 0.1. As in the regression analysis we showed before,

we also add the item’s category membership as a predictor (i.e., C(i) = 1 if the

item was a target, C(i) = 0 if it was a distractor). We call the regression weights

ζ for the drift rate and ρ for the nondecision time:

µλ(i) = ζ0 + ζ1T(i) + ζ2L(i) + ζ3F(i) + ζ4W(i) + ζ5P(i) + ζ6C(i)

µψ(i) = ρ0 + ρ1T(i) + ρ2L(i) + ρ3F(i) + ρ4W(i) + ρ5P(i) + ρ6C(i).

In principle, we could do the same for the person contributions to the drift rate

or nondecision time, or for the caution parameter α. For example, intelligence

might predict the drift rate component (see e.g., Ratcliff et al., 2008) or neuroti-

cism might be connected to the caution parameter. Unfortunately, the present

data sets do not include person covariates.

6.2. Results

The model we have presented is an instance of a hierarchical diffusion model.

Software to implement such a model was made available by Vandekerckhove

et al. (2009, “wienereta.odc”). Using this software, we obtained posterior dis-

22



 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

tributions for each of the parameters in the model.7 The Appendix contains a

discussion of the fit of the model to the data.

The posterior distributions for ζ, per semantic category, are displayed in

Fig. 2, and those for ρ are in Fig. 3. These posterior inference plots may be

read as follows. In each of the subplots, the five horizontal lines represent the

posterior distributions of the regression weights of the five LNCD covariates.

The lines indicate the Bayesian credibility interval (CI): the region around the

mean that contains 95% of the mass of the parameter’s posterior distribution.

The diamonds indicate the posterior means. The vertical line is the value 0. In

these figures, two patterns emerge quite clearly: the effect of Typicality (T ) on

drift rate is always positive, and most of those CIs do not include 0. Similarly,

in Fig. 3, Word Length (L) generally has a positive effect on nondecision time.

To compare these results to the ones obtained from the standard analysis in

Table 1, we constructed a similar table for these two sets of regression weights.

We display the sign of a regression weight if its 95% credibility interval does not

contain 0 (i.e., with 95% probability the parameter is not 0). In contrast with

the classical analysis, results here are predominantly consistent—for the drift

rate regression, only Typicality consistently shows up as a good predictor. For

the nondecision time, Word Length has a consistent influence. In both cases,

the sign of the regression weight is as expected.8

Fig. 4 shows the relationship between the Typicality score of an item and its

contribution to the drift rate (depicted for an average participant; i.e. γ(p) = 0)

in the category mammals. A somewhat linear relationship is evident9, and we

7We followed the recommendations made by Vandekerckhove et al. (2009) to check for

convergence issues and found that there were none (all convergence statistics R̂ < 1.05, all

chains show proper mixing).
8The present analysis is based on a multiple regression. In one alternative attempt, we

restricted ourselves to univariate regressions (i.e., including one covariate at a time), and

obtained comparable results.
9The linear relationship is clearly not perfect, and perhaps even better prediction could

have been achieved with a non-linear regression, but we do not explore that avenue here.
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Figure 2: Posterior inference plots for the regression weights ζ (the regression weights for the

λs, the item contributions to the drift rates). See text for details.
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Figure 3: Posterior inference plots for the regression weights ρ (the regression weights for the

ψs, the item contributions to the nondecision times). See text for details.
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Table 3: Regression weights in the HDM. The signs of the regression weights whose 95%

credibility intervals do not contain 0 are displayed, others are replaced by a dot.

ζ ρ

T L F W P T L F W P

birds + – · – · · · · · ·

fish · · – · + · · · · ·

insects + · · · · · + · · ·

mammals + + · · · · + · · ·

musical instruments · · · · · · · · · ·

reptiles + – · · · · + · · ·

tools + · · · · · + · · ·

vehicles + · · + – · + · – ·

have labeled some of the items on the graph. Item bat has the lowest Typicality

rating, and also the lowest drift rate. Items dog and lion reside on the opposite

side of the spectrum.

While some of these effects are very easy to interpret, others are less intuitive.

In Fig. 5, we display the effect that drift rate has on the raw data. We selected

three items from the range of Typicality ratings (from the mammals category)

and display the expected distribution of their (correct) RTs and their expected

accuracy scores.

The interindividual variability is also notable. In particular, the person-

specific α parameter that represents a person’s caution shows much variation.

Fig. 6 shows the effect of different boundary separations (keeping all other fac-

tors constant). We selected three participants from the population (correspond-

ing to the 10th, 50th, and 90th percentiles) and plotted their expected raw RT

distributions and accuracies (for an average item). The range of α values in the

population has a small but noticeable effect on both the RT distribution and

the accuracy scores.
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Figure 4: An example regression result. Drift rate on average increases with increasing Typ-

icality. Item bat is a clear outlier on both dimensions. The dotted lines indicate the mean

Typicality and mean drift rate. To avoid confusion: the values on the vertical axis are the

total drift rates assuming an average person with γ(p) = 0.

The effect of Word Length is, from a research methods point of view, perhaps

the most important to keep in mind (we will elaborate on why we believe this

is so in the Discussion section below). Fig. 7 shows the relationship between

Word Length and nondecision time for the category tools (here, too, the effect

might be better captured by a non-linear regression). The nondecision times

associated with particular items range from 500ms to 630ms—the interquartile

range is more than 60ms. A graphical presentation for this effect (like the ones

in Figs. 5 and 6) would show identical accuracy scores and identically shaped

RT distributions, but shifted to the right for items with higher values of ψ(i).

For interpretation, we can compute that, on average, adding one letter to a word

shifts the RT by 7–12ms, depending on the category.10

Finally, we can compare differences between participants with differences be-

10This is in line with results from Hampton (1997).
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Figure 5: The effect of higher Typicality (and hence higher drift rates) on the raw data.

RT distributions become more compact and less skewed (smaller mean, smaller variance) as

Typicality (drift rate) increases. Accuracy increases with higher Typicality. The PDFs are

marginal PDFs (i.e., conditional upon a correct answer) and have been normalized so that

they integrate to 1).

tween items. Table 4 shows population standard deviations from the HDM (the

values shown are the means of the posterior distributions of the parameters).

Comparing the drift rate’s variability due to persons (σγ) with its variability

due to item differences (σλ(1) for targets11, σλ(2) for distractors), we can see

that, with the exception of the category fish, the item variance is always much

larger than the person variance. The reverse is true for the nondecision time:

residual item variance there is much smaller than the variance in the person

population.

7. Discussion

The theoretical advantages of using a process model on the one hand and a

hierarchical model on the other (together leading to a cognitive psychometric

model) were described in the introduction. However, the demonstration in the

present article also shows the practical applicability of this method.

We believe that, as a methodological advance, the HDM framework (Van-

11Note that this is the residual item variance, after correcting for all the covariates.
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Figure 6: The effect of higher boundary separation on the raw data. P19 has a high α, P44 has

a median value, and P45 has a low α. RT distributions become more skewed with increasing

α, but accuracy increases. The PDFs are marginal PDFs (i.e., conditional upon a correct

answer) and have been normalized so that they integrate to 1).

dekerckhove et al., 2009) can contribute not only to semantic categorization

studies, but to a more general class of paradigms. If speeded binary choice

RTs are collected, and if it is likely that there are interindividual (or interitem)

differences, then the HDM framework might prove useful.

In the introduction, we have also referred to Estes’ (1956, 2000) view on

individual differences and how averaging over participants (or items) may lead

to averaging artifacts. Hierarchical modeling deals with this issue in a practical

and efficient way. In the domain of choice RTs, a different type of unmodeled-

variability artifact may occur if variability in the various facets of the response

process is ignored. In the particular case of the HDM, variability in the nonde-

cision process time (i.e., encoding and processing time) can easily be confused

for variability in the decision process time. Indeed, past analyses of semantic

categorization data have found effects of word length on RT, but the present

analysis strongly suggests this to be an artifact—word length does not predict

the information uptake rate, but rather the encoding time of the process. How-

ever, accounting for this variability in nondecision time is important to achieve

proper parameter estimates.
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Figure 7: Nondecision time in the category tools on average increases with increasing Word

Length. The dotted lines indicate the mean Word Length and mean nondecision time. The

values on the vertical axis are the total nondecision times (assuming an average person with

χ(p) = 0). Word Length has been jittered to avoid overlapping symbols. The original Dutch

versions of the labeled items were (from left to right): zaag, schop, boormachine, staalborstel,

and schroevendraaier.

7.1. Implications for semantic categorization studies: item properties

The model of speeded semantic categorization we have introduced is very

explicit about the various stages involved in making a category membership

decision towards a visually presented verbal stimulus. Our results suggest that

elaboration of the aspects involved in arriving upon that decision is a useful

practice. By attributing the effects of typicality and word length to different

aspects of the response process, the analysis moves beyond the common practice

of regressing these covariates upon the observed RTs. The very nature of the

latter approach confines it to the mere establishment of the relative effect of

both covariates upon RT. The HDM approach, by contrast, allows the effect to

be attributed to specific components of the RT.

The critical reader might raise the objection that we have not been explicit

enough in our account of the categorization behavior, and might point out that
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Table 4: Population variability parameters in the HDM. We can compare the person variabil-

ities with the item variabilities (see text for details). All values are standard deviations.

boundary

separation

nondecision

time
drift rate

σα σχ σψ σγ σλ(1) σλ(2)

birds 0.018 0.067 0.023 0.025 0.077 0.115

fish 0.013 0.084 0.035 0.122 0.057 0.176

insects 0.022 0.064 0.024 0.018 0.113 0.229

mammals 0.024 0.067 0.023 0.019 0.069 0.085

musical

instruments
0.021 0.058 0.020 0.093 0.091 0.157

reptiles 0.024 0.091 0.029 0.022 0.106 0.247

tools 0.015 0.081 0.020 0.021 0.078 0.148

vehicles 0.020 0.056 0.026 0.025 0.093 0.164

for those among us who are interested in understanding semantic cognition the

question “what governs semantic categorization time differences” has shifted

towards “what governs information uptake differences.”

In response to this objection we readily admit that, indeed, we have been

less than explicit about the representation upon which the accumulator process

acts. We have not committed ourselves, for instance, to featural representations

of the kind Smith et al. (1974) or McCloskey and Glucksberg (1979) have ar-

gued for. Nor did we attempt to attempt to link the accumulation process to the

semantic markers that were proposed by Glass and Holyoak (1974). Although

the terminology we have used throughout this manuscript (e.g., information up-

take, accumulation of evidence) might tempt the reader into thinking that the

diffusion model is more in favor of a successive comparison of exemplar and cat-

egory features than of an ordered search through semantic markers, we do not

necessarily believe this to be the case. Any representational format that allows
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for a stochastic accumulation of evidence for or against the endorsement of an

item as a category member is in principle compatible with the diffusion model

we propose (several papers in the present issue make detailed representational

assumptions that could drive a sequential sampling process model: Zeigenfuse

and Lee, this issue; Kemp et al., this issue; Ceulemans & Storms, this issue; Dry

and Storms, this issue). This does not imply that the methodology we have pro-

posed in this manuscript can not be brought to bear upon the representational

issue. In much the same way as we have explored the relative contributions of

different covariates to the degree of information uptake, one could evaluate the

predictions of rivalling representations, providing that they are explicit enough

to warrant quantification. One might consider using the LNCD again for such

endeavors as they include plenty of information on the intension and extension

of semantic categories.

For now, however, we feel that casting speeded semantic categorization de-

cisions in terms of a diffusion model constitutes sufficient explicitation. As we

have pointed out in the Introduction, much of the efforts during the last three

decades have been aimed at disentangling the various constructs that are likely

to influence semantic categorization. As it is along the lines of these constructs

that theories of semantic behavior are likely to develop, tools that shed light on

the varying manners in which they exert their influence are valuable. A HDM

modeling framework may be useful in this regard.

In the near future we hope the model will allow us to study the effects of

variables that are present in the LNCD, but were not incorporated in the current

analyses for reasons of brevity. The question of whether age of acquisition exerts

an effect in semantic categorization, and how that effect might come about, for

instance, deserves some attention as they have generated considerable debate

(Brysbaert et al., 2000; De Deyne and Storms, 2007; Morrison et al., 1992;

Morrison and Gibbons, 2006). We also hope to study the impact category

dominance has on the categorization performance participants display. This will

require the collection of additional data as the LNCD does not include a direct

measure of the association strength between an item and its superordinate(s).
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(See De Deyne and Storms, 2008, for a discussion of the differences between

the direct or constrained measures of category dominance that are mostly used

in the semantic categorization literature and the unconstrained measure that

can be found in the LNCD.) These and other investigations will undoubtedly

benefit from experimental manipulations that are expected to influence the effect

a particular covariate has on the distribution of one of the model’s parameters,

but not on that of others (Hampton, 1997).

7.2. Implications for semantic categorization studies: person properties

In the Results section we already indicated that our analyses implied in-

terindividual variability in semantic categorization behavior. Namely, the per-

son-specific α that represents a person’s caution showed considerable variation

with accompanying effects on the degree to which true category exemplars were

endorsed as such (see Fig. 6 for a demonstration). These differences between

persons reflect (more or less) imprudent task strategies resulting in (more or

fewer) erroneous decisions. It has been shown (e.g., Hampton, 1998, 2007; Mc-

Closkey and Glucksberg, 1978) that people may disagree considerably about the

items they consider to be true members of a semantic category. The degree to

which people disagree is likely to be reflected in the variation of the α parameter.

As De Deyne (2008) did not record any information on the students partici-

pating in the semantic categorization task but their age and gender, our assump-

tions regarding the person side of the diffusion model have remained strictly

descriptive (i.e., no external covariates that might be employed to explain the

interindividual variability that was observed were available). Looking at recent

applications of the speeded semantic categorization task, in which the deci-

sions of individuals with autism were compared with those of matched controls

(Gastgeb et al., 2006) or the differences in categorization behavior by Broca’s

and Wernicke’s aphasic individuals were investigated (Kiran and Thompson,

2003), it seems that the approach argued for in this manuscript may also prove

to be valuable when applied to person properties instead of item properties.

One can image proposing a diffusion model of speeded semantic categorization
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in which person variables are regressed upon the model’s parameters or a model

whose parameter distributions are allowed to differ from one group to another.

Along these lines we have begun to compare the categorization behavior of in-

dividuals displaying many schizotypal traits to that of individuals who display

few schizotypal traits. The difference in the degree to which individuals in the

general population display these traits is thought to accompany their willing-

ness to endorse weak semantic associates as true category members (Kiang and

Kutas, 2005, 2006). Hence, we would expect that in the diffusion model analy-

sis participants scoring high on schizotypy would demonstrate a greater bias β

towards the target than participants who obtained a low score.
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A. Fit of the HDM to the data

In order to give an indication of the absolute fit of the HDM to the data

at hand, we generated new data from the HDM with the parameters that we

obtained. We feel that a model fails to be useful if it fails to capture some sort

of regularity that is present in the data. Comparing generated data to the real

empirical data might give an indication of unexplained patterns. Since models

are by nature idealized representations, some deviation is always expected, but

such deviation should not be systematic.

By generating 20,000 new data sets from the model, we obtain the distri-

bution of each data point, as predicted by the model. Figure 1 shows three

example data points.

As it would be uneconomical to clutter this appendix with thousands of

pages of graphs,12 we summarized the relevant aspect of each plot. Figure 2

shows the distribution of deviances of the observed data from its a posteriori

mean prediction (negative values indicate that the response was slower than

predicted by the model). The eight different distributions correspond to the

different semantic categories, but they do not differ in any meaningful way.

The deviance distribution is left-skewed, indicating that the data contain more

positive outliers than negative ones (as is expected in a latency distribution).

In general, the model fits the data quite well.

12The full set of graphs may be obtained from the first author upon request.
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Figure 1: Three example fit graphs for single data points (all taken from participant 1, category

mammals). θ is the expected probability of a correct response, and A is the actual response

given. The top left graph shows the observed data point (vertical line) exactly on the mode of

the posterior predictive distribution, indicating an excellent prediction. On the top right, the

model correctly predicts that the participant made an error on the stimulus bat. The majority

of graphs look like the ones on the top row. The bottom left graph shows a serious latency

underestimation by the model. The bottom right graph shows a data point whose response

latency is predicted fairly well, but where the model did not predict that participant made a

categorization error on hamster.
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Figure 2: The distribution of model error, per semantic category. See text for details.
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