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Classical approaches to uncertainty quantification in cognitive modeling rely on computationally expensive Monte Carlo methods or resampling
of raw trial data, which creates a barrier for real-time analysis and large-scale studies. We present a computationally efficient bootstrap method
that operates directly on summary statistics, exploiting the synthetic likelihood structure of a small class of cognitive models that includes
the simple diffusion model and the circular diffusion model in addition to signal detection and multinomial processing trees. The method
relies on a numerical transformation-of-variables technique in which known sampling distributions of summary statistics of behavior are
parametrically bootstrapped, after which the resampled statistics are transformed to parameter estimates with a known analytical system. This
approach does not require additional assumptions beyond those already made by the models themselves, but achieves over 1000-fold speed
improvements over already efficient fully Bayesian methods. The proposed method makes real-time uncertainty quantification accessible and

enables new applications in adaptive testing, meta-analyses, and exploratory data analysis.
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Cognitive models serve dual purposes in psychological research.
On one hand, they can be used to understand the cognitive
infrastructure—the underlying mechanisms and processes that
give rise to behavior. On the other hand, cognitive models can
function as measurement tools, translating behavioral observations
into interpretable psychological parameters. This paper focuses
on the latter: we develop computationally efficient methods for
uncertainty quantification in cognitive models used as measure-
ment instruments. The need for computational efficiency becomes
critical in large-scale applications such as meta-analyses across
hundreds of studies, real-time experimental analysis during data
collection, and individual differences research requiring parameter
estimation for thousands of participants. Traditional approaches
to uncertainty quantification, which rely on computationally expen-
sive resampling or Bayesian inference, create barriers in these
contexts. We propose a bootstrap method that exploits the syn-
thetic likelihood structure of a class of cognitive models we call ‘EZ’
models, achieving dramatic speed improvements while maintaining
statistical validity.

Synthetic likelihood methods

Synthetic likelihood methods provide a framework for statistical
inference when the likelihood function is intractable but summary
statistics with known or estimable distributions are available (Wood,
2010; Price, Drovandi, Lee, & Nott, 2017). The core idea is to
replace the full likelihood with a likelihood based on summary
statistics, which can be computed efficiently even when the full
data likelihood cannot.

The synthetic likelihood approach was introduced by Wood for
inference in complex ecological systems with chaotic dynamics.
When direct likelihood evaluation is impossible, one can extract
phase-insensitive summary statistics from the data and compare
them to summary statistics simulated from the model. This ap-
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proach has been extended to Bayesian settings (Price et al., 2017),
where the synthetic likelihood is used within a Bayesian framework
to enable posterior inference.

Certain cognitive models, which we will refer to here as the
‘EZ’ models (after the EZ diffusion model; Wagenmakers, van der
Maas, & Grasman, 2007), similarly fit the description of synthetic
likelihood models, and provide a natural application of methods
specific to that class. For example, in the EZ diffusion model, rather
than working with the full likelihood over all trial-level data, we work
with three summary statistics: accuracy rate, mean response time,
and response time variance. These statistics have known sampling
distributions, allowing us to construct a likelihood function directly
from the summaries (Chavez De la Pefia & Vandekerckhove, in
press). This synthetic likelihood approach is particularly powerful
because the EZ model provides analytical expressions that map
parameters to these summary statistics, eliminating the need for
simulation, and paving the way for uncertainty quantification using a
variation on a classic transformation-of-variables technique, which
we will describe after introducing the model class.

The class of EZ models

We will rely on a class of cognitive models we call ‘EZ’. EZ models
are defined by the existence of an invertible system of equations
that maps a model parameter vector 6 to a set of summary statistics
S. The vector 6 need not contain all of the model’'s parameters,
but may be limited to a subset of interest (as in the application by
Wood, 2010). The system consists of a set of smooth ‘forward’
equations f and ‘inverse’ equations i:

f =S5
i S0 (1]

The EZ class contains some well-known cognitive models. We
take signal detection theory (SDT; Swets & Green, 1966) as an
example:

(H7 F) = fSDT(d,vC)
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where ® denotes the standard normal cumulative distribution func-
tion. The inverse equations map summary statistics back to pa-
rameters:

(d,, C) = iSDT(H, F)

d/
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where &~ denotes the inverse standard normal cumulative dis-
tribution function. Here, H denotes the hit rate (probability of
correctly identifying a signal), F' denotes the false alarm rate (prob-
ability of incorrectly identifying a signal when none is present), d’
denotes sensitivity (the ability to discriminate signal from noise),
and c denotes the criterion (the decision threshold).

Other members of the EZ class include the EZ diffusion model
(Wagenmakers et al., 2007), the EZ circular diffusion model
(Qarehdaghi & Rad, 2024), and some simple multinomial pro-
cessing tree models with analytical solutions. These models are
discussed in detail below.

O Y(H) - d '(F)
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The EZ bootstrap procedure

We propose a bootstrap method we call ‘EZ bootstrap’ that exploits
the synthetic likelihood structure of EZ models. The method op-
erates directly on summary statistics, using their known sampling
distributions to perform a parametric bootstrap.

In the abstract, EZ bootstrap proceeds along the following steps.
First, (1) compute summary statistics S from the observed data.
Then, (2) for each bootstrap repetition b = 1, ..., B: (2a) sample
summary statistics S; from their known sampling distributions Dg
(the requirement that these distributions be known or estimable is
fundamental to the method), and (2b) transform S; through the
inverse equations i to obtain bootstrap parameter estimates 6; =
1(Sy). Finally, (3) aggregate the bootstrap parameter estimates
{07, ...,0%} to compute means, standard deviations, and credible
intervals.

This procedure is formalized in Algorithm 1. EZ bootstrap is fun-
damentally a transformation-of-variables approach to uncertainty
estimation. Rather than resampling raw data and re-estimating
parameters, we resample the summary statistics from their known
distributions, then transform these resampled statistics through the
inverse equations to obtain parameter estimates. Specifically, in
Algorithm 1 we sample S; from Dg for each bootstrap repetition
b=1,...,B, then compute 6; = i(S;) to obtain the bootstrap
parameter estimates {67, . ..,0%5}. This transformation preserves
the statistical properties of the bootstrap while eliminating the com-
putational cost of data resampling.

Transformation of variables for uncertainty quantification.
Transformation of variables is a fundamental method in statistics
for propagating uncertainty through deterministic transformations
(Rice, 2006, see also Hayes & Scharkow, 2013). When a ran-
dom variable X with known distribution is transformed through a
function Y = g(X), the distribution of Y can be derived using the
change-of-variables formula. This technique is central to the EZ
bootstrap method.

In the context of uncertainty quantification, transformation of
variables allows us to derive the distribution of parameter estimates
from the distribution of summary statistics in EZ models. The in-
verse equations (Eq. 1) provide a deterministic transformation from
summary statistics to parameters. By applying this transforma-
tion to bootstrap samples of the summary statistics, we obtain
bootstrap samples of the parameters, which can then be used to
quantify uncertainty.
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Algorithm 1 EZ Bootstrap Procedure

Require: Observed summary statistics .S, number of bootstrap
samples B, inverse transformation ¢ : S +— 6, sampling distri-
butions Dgs for each component of S

Ensure: Bootstrap parameter estimates {67, ..

1: @ 0
2: forb =1to Bdo
3: Sample S; ~ Dgs from known sampling distributions of S
0y «— i(Sy)
0"+~ 0"uU{b;}
return ©*

05}

A

The key advantage of this approach is computational efficiency.
Rather than resampling raw data and re-estimating parameters
for each bootstrap sample—which would require expensive opti-
mization or simulation (Efron & Tibshirani, 1994)—we resample
the summary statistics from their known distributions and apply the
analytical transformation, as formalized in Algorithm 1. This elimi-
nates the computational bottleneck while preserving the statistical
properties of the bootstrap.

The transformation-of-variables approach is made possible in
EZ models particularly because the inverse transformation is ana-
lytical, smooth, and one-to-one (within the parameter space, or a
relevant subspace thereof).

Theoretical justification for coverage preservation. The boot-
strap procedure maintains proper coverage properties when the
inverse transformation 7 : S +— 0 is a continuous, differentiable
function. Under the bootstrap sampling scheme, we generate S*
from its known distribution, then compute 6 = i(S™). Since i
is deterministic and the bootstrap samples S* have the correct
sampling distributions, the transformed samples 6* correctly rep-
resent the sampling distribution of the parameter estimates. This
follows from the invariance property of bootstrap methods under
smooth transformations (Rice, 2006). The coverage properties are
preserved because the bootstrap distribution of the transformed
parameters matches the true sampling distribution of the parame-
ter estimates — up to the accuracy of the assumed distributions for
the summary statistics.

Design matrix extension

In applied contexts, we often constrain parameters across condi-
tions. These constraints can be expressed using design matrices.
For example, for diffusion models, if drift rates, 9, vary linearly with
a stimulus property x;, we can write:

0; = Bo + Pr;.
If they vary quarilinearly, then:
0; = Bo + Prwi + 52%2.

This generalizes, so that parameter constraints can be ex-
pressed as:
A=Xxp

where A is a vector of parameters, X is a design matrix, and 3 is
a vector of regression weights.

If the model parameters A are known and the model is identi-
fied, the weights 3 can be derived via matrix inversion:

B=X""'"xA [4]
Importantly, adding the design matrix extension keeps the

model inside the EZ class and does not change the bootstrap
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logic. This is easy to prove: Let i : S — 6 denote the EZ inverse
transformation mapping summary statistics S to parameters 6
(Eq. 1), and let h : 6 — B denote the design matrix transformation
mapping parameters 6 to beta weights 3 via h(6) = X !0 (where
X is the design matrix). The basic EZ bootstrap generates boot-
strap samples 6* = i(S™) where S™* is resampled from the known
distribution of summary statistics. With the design matrix exten-
sion, we generate bootstrap samples 8* = h(i(S*)) = X ~i(S*).
Since i is a deterministic, smooth transformation (by the defini-
tion of EZ models) and F is a deterministic linear transformation
(matrix multiplication), their composition (h o) : S — B is also
deterministic and smooth. By the same invariance property of
bootstrap methods under smooth transformations (Rice, 2006), if
the bootstrap distribution of S* correctly represents the sampling
distribution of .S, then the bootstrap distribution of 8* = (ho)(S*)
correctly represents the sampling distribution of 8 = (h 0 7)(S5).
Therefore, the design matrix extension preserves the bootstrap’s
coverage properties: the model remains in the EZ class because
we still use the EZ inverse transformation, and the bootstrap logic
is unchanged because we are still propagating uncertainty through
a deterministic transformation.

Application to the simple diffusion model

The drift diffusion model (DDM) provides a unified account of
decision-making processes, modeling both response accuracy and
response time as the result of an evidence accumulation process
(Ratcliff, 1978; Wagenmakers, 2009). This framework has proven
valuable in cognitive psychometrics, enabling the translation of be-
havioral patterns into interpretable cognitive parameters (e.g., Pe,
Vandekerckhove, & Kuppens, 2013; Schubert, Nunez, Hagemann,
& Vandekerckhove, 2019; Vandekerckhove, 2014).

The EZ diffusion model (Wagenmakers et al., 2007) was orig-
inally proposed as a method to simplify use of the DDM by pro-
viding analytical expressions that map three summary statistics—
accuracy rate, mean response time, and response time variance—
to three cognitive parameters: drift rate, boundary separation, and
non-decision time. This makes the EZ framework a synthetic likeli-
hood model: it provides a likelihood function based on summary
statistics rather than raw trial data.

The EZ diffusion model. The EZ diffusion model provides an-
alytical expressions for three summary statistics from a set of n
two-choice decision trials. Let P denote the observed accuracy
rate, M the observed mean response time, and V the observed
response time variance. The model’s three parameters are the
drift rate ¢, boundary separation «, and non-decision time 7. This
allows us to define forward equations for : (5, o, 7) — (P, M, V)
and inverse equations ip : (P, M, V) — (6, a, 7).

The EZ forward equations map parameters to summary statis-
tics. Let y = exp(—ad) where « is boundary separation and ¢ is
drift rate. Then,

1

1+y
N . g ]_—y
M= T+<25) <1+y)
. o 1 — 200y — 32
Vo= (253)< )

(1+y)?
When § =0 (drift rate is ze[o), the forward equations simplify to
P=05M=1+a,andV = o’

P
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The EZ inverseAequatiops map summary statistics to parame-
ters. Let y = log(P/(1 — P)) be the logit of accuracy. Then,

R P2, _ P D _
6 = sign(P—l)i/y(Py PyA+P 1/2)
2 1%
- ¥
“ T
1_6—&1
T =

~ e
M= (26) ( >
where sign(z) denotes the sign function, which returns +1if z > 0
and —1 if z < 0. In this context, it determines whether drift
is positive (when accuracy > 0.5) or negative (when accuracy
< 0.5).

These equations provide point estimates. The bootstrap method
extends this to uncertainty quantification.

The EZ bootstrap procedure applied to simple diffusion. The

bootstrap exploits the known sampling distributions of the summary
statistics. For a sample of size n, these distributions are:

14 ed

nP Binomial(n, p)
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Vo~ Gamma(
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where p, m, and s? are the true population values of accuracy,
mean RT, and RT variance.

Distributional assumptions and their justification. The bino-
mial distribution for accuracy is exact. The normal distribution for
mean RT is asymptotically valid by the central limit theorem; for
finite samples, this approximation is accurate when n > 30 and
the underlying RT distribution has finite variance. The Gamma
distribution for variance is exact under the assumption that RTs
are normally distributed; while RTs are not exactly normal, this
approximation is reasonable for the EZ model when sample sizes
are moderate (n > 50). Note, however, that we do not make
sample size recommendations based on these classical rules of
thumb. The procedure we propose is so fast that Monte Carlo
studies are very feasible methods to evaluate the effect of violated
assumptions.

Independence assumption. We assume approximate indepen-
dence between the three summary statistics. While these statistics
are derived from the same data, they are asymptotically inde-
pendent under the EZ model assumptions. For finite samples,
correlations have negligible impact on coverage properties (see
our simulation studies below).

Simulation studies. We present two standard calibration studies
to validate the EZ bootstrap method for the EZ diffusion model.
In both cases, the target of the study was the calibration of the
uncertainty quantification in terms of credibility interval coverage
— that is, we sought to confirm that credibility intervals contain
the true value at a rate commensurate to their nominal coverage
probability (specifically, that 95% credible intervals contain the true
value 95% of the time).

Study 1: Single condition. In Study 1, we evaluated coverage
for the regular EZ diffusion model with a single condition. We
simulated n = 100 trials from true parameters « 1.0, 6 =
0.5, and 7 = 0.2. For each of 10,000 simulation repetitions, we
computed credible intervals at the 95% confidence level using the
EZ bootstrap method (with 1000 bootstrap samples).
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We evaluated coverage at the 95% confidence level across
all simulation repetitions. The EZ bootstrap method achieved
excellent calibration. Coverage rates were 95.5%, 94.8%, and
96.0% for boundary, drift, and non-decision time, respectively—all
within expected sampling variation of the nominal 95% level. When
considering all three parameters simultaneously, the coverage rate
was 87.7%, closely matching the expected value (0.95% ~ 0.857).

Study 2: Design matrix extension. In Study 2, we evaluated
coverage for the EZ diffusion model with a design matrix extension.
We simulated data from four conditions using a design matrix with
three regression weights for each parameter type (boundary, drift,
and non-decision time), resulting in 9 beta weight parameters total.
The true beta weights were: boundary weights [1.0, 1.5, 2.0], drift
weights [0.4, 0.8, 1.2], and non-decision time weights [0.2, 0.3, 0.4].
These parameter values were chosen to represent typical values
in the EZ diffusion model (Matzke & Wagenmakers, 2009).

The design matrices for boundary, drift, and non-decision time
parameters were:

Xa: 7X5: 7XT:

—= -0 O
— o = O

0
0
1
0

[N oo
oo = O
[N oo
—_ o O
oo = O
o= OO

where each row corresponds to a condition and each column
corresponds to a regression weight. Each condition had n = 100
trials. We conducted 10,000 simulation repetitions, computing
credible intervals at the 95% confidence level using EZ bootstrap
(with 1000 bootstrap samples).

The EZ bootstrap method maintained excellent calibration even
with the added complexity of the design matrix structure. For
boundary weights, coverage rates were 95.7%, 94.9%, and 96.6%
across the three weights. For drift weights, coverage rates were
94.6%, 94.2%, and 98.0%. For non-decision time weights, cover-
age rates were 96.2%, 94.3%, and 94.7%. All coverage rates were
within expected sampling variation of the nominal 95% level.

Computational performance. The EZ bootstrap method is ex-
ceptionally computationally efficient. The simulations were run on
an off-the-shelf laptop, using a single core of an 11th Gen Intel®
Core™ i7-1195G7 processor running at 2.90GHz. For Study 1,
the method required a mean of only 0.16 ms per estimation (SD =
0.02 ms), enabling rapid uncertainty quantification. For Study 2,
with the added complexity of the design matrix, the method required
a mean of 0.95 ms per estimation (SD = 0.13 ms). A comparable
Bayesian analysis reported by Chavez De la Pefia and Vandeker-
ckhove (in press, Appendix D) took approximately 3,800 ms. The
sub-millisecond computation times of the EZ bootstrap demon-
strate that the method makes real-time' uncertainty quantification
feasible where traditional methods would be prohibitively slow.

Application to the circular diffusion model

The circular diffusion model (Smith, 2016) extends the diffusion
model to circular decision spaces, where evidence accumula-
tion occurs in a two-dimensional disk rather than along a one-
dimensional line. The EZ version of the circular diffusion model
(EZ-CDM; Qarehdaghi & Rad, 2024) provides analytical expres-
sions that map four summary statistics—circular mean of choice
angles, circular variance of choice angles, mean response time,
and response time variance—to four cognitive parameters: drift
angle, drift magnitude, boundary radius, and non-decision time.

"We have a strict definition of “real-time” as less than the duration of one display frame in a typical
experimental setup — usually at most 1/120th of a second or 8.33 ms.
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This makes the EZ-CDM framework a synthetic likelihood model:
it provides a likelihood function based on summary statistics rather
than raw trial data.

The EZ circular diffusion model. The EZ circular diffusion
model provides analytical expressions for four summary statis-
tics from a set of n circular decision trials. Let M, denote the
observed circular mean of choice angles, V, the observed circular
variance of choice angles, M; the observed mean response time,
and V; the observed response time variance. The model’s four
parameters are the drift angle 6., drift magnitude v, boundary ra-
dius a, and non-decision time tq. This allows us to define forward
equations feom : (v,v,a,to) — (Ma,Va, Mt, V) and inverse
equations icom : (Ma, Va, My, Vi) — (04, v, a,to).

The forward equations fcom : (0w, v, a,to) — (Ma, Vo, My, V3)
map parameters to summary statistics. The choice-angle distri-
bution is von Mises with mean n = 8, and concentration kK = av.
The circular mean and variance are then:

Ma = 01}
Vo = 1—-R

where R = I,(x)/Io(x) and Ip and I; are modified Bessel func-
tions of the first kind. The response time moments are:

M,

to—‘rgR
v

2
2
Vi = LR+ ZR-d
v v
The inverse equations icom : (Ma, Va, My, Vi) = (04,0, a,to)
map summary statistics to parameters. The estimation proceeds
in four steps:

~

0, = M,
R = 1-V,, solve L(x) = Rfork
Io(K)
2 4 2 P2

= K%+ kP +4Vi(k2R2 + 25R) | &

= 4=
v 2V, ’ o

v

where the solution for 9 is obtained by solving the quadratic
equation derived from the forward equation for V;. Solving R =
I, (k) /1o (k) for k is faciliated by the piecewise estimator of Fisher
(1993, see pp. 88-93 for further detail):

2R+ R®+ 2R, R < 0.53,

4
b~ d —0.441.39R + %, 0.53 < R < 0.85,
1
. S— R > 0.85.
R3 —4R? + 3R =

As an excellent alternative, Qarehdaghi and Rad (2024) suggest
performing a single step of Newton-Raphson optimization. This
approach typically provides higher accuracy than the piecewise
approximation but requires extra computational effort.

The sampling distributions of the four summary statistics de-
termine the variability and robustness of EZ-CDM parameter es-
timates. Under the CDM, choice angles follow a von Mises distri-
bution with concentration « = av, and response times follow the
first-passage-time distribution of a two-dimensional Bessel process
with drift.

Vandekerckhove et al.



For the circular mean of choice angles (MCA), the angular error
9: — 0, is approximately normally distributed for large N (Fisher,
1993), and so: .

bo = N (9”’ NKR) '

The variance decreases rapidly with concentration x, making esti-
mation more difficult when drift magnitude or boundary radius are
small.

For the circular variance (V,), the mean resultant length

L \/(% Sy cos(@i))Q + (=32, sin(@i))2 is approxi-
mately normal for moderate-to-large IV, with mean R and variance
1*NR2 (Fisher, 1993). Consequently, V, = 1 — R is also asymp-
totically normal with the same variance. The circular variance is
only weakly sensitive to outliers in angle (since angles wrap on the
circle). However, parameter estimation becomes unstable when
R is near zero (because then the data are essentially uniform on
the circle and provide limited information about the concentration
parameter k).

For mean response time (M), the central limit theorem applies:

— Vi
My ~ N (Mt, Nt)
Mean RT is robust for large N but sensitive to RT contaminants.
For response time variance (1), the sample variance is asymp-
totically normal but with slower convergence:

)

where my is the fourth central moment of the RT distribution. This
statistic is the most contamination-sensitive in EZ-CDM, as a small
number of extreme RTs can cause large upward shifts (see Chavez
De la Pefia, Shin, & Vandekerckhove, preprint, and Qarehdaghi &
Rad, 2024, for approaches using robust summary statistics).

The EZ bootstrap procedure can be applied to EZ-CDM by
resampling these statistics from their asymptotic distributions. The
angle-based statistics (M, and V,) have well-behaved sampling
distributions, while the RT-based statistics (M; and V%) introduce
most of the sampling variability in the inversion system, especially
when solving for drift magnitude and boundary radius.

Simulation studies. We again present two calibration studies
to validate the EZ bootstrap method for the EZ circular diffusion
model. The target of the study was again the calibration of the
uncertainty quantification in terms of credibility interval coverage
(95% credibility).

Study 1: Single condition. In Study 1, we evaluated coverage for
the regular EZ circular diffusion model with a single condition. We
simulated n = 100 trials from true parameters 6, = 0.0, v = 1.0,
a = 1.0, and tp = 0.2. For each of 10,000 simulation repetitions,
we computed credible intervals at the 95% confidence level using
the EZ bootstrap method (with 1000 bootstrap samples).

We evaluated coverage at the 95% confidence level across
10,000 simulation repetitions. The EZ bootstrap method achieved
excellent calibration. Coverage rates were 93.9%, 94.3%, 95.2%,
and 94.8% for drift angle, drift magnitude, boundary radius, and
non-decision time, respectively—all within expected sampling vari-
ation of the nominal 95% level. When considering all four pa-
rameters simultaneously, the coverage rate was 82.4%, closely
matching the expected value (0.95* ~ 0.815).

Study 2: Design matrix extension. In Study 2, we evaluated
coverage for the EZ circular diffusion model with a design matrix

~ . A
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extension. We simulated data from four conditions using a design
matrix with three regression weights for each parameter type (drift
angle, drift magnitude, boundary radius, and non-decision time),
resulting in 12 beta weight parameters total. The true beta weights
were: drift angle weights [0.0,0.5, 1.0], drift magnitude weights
[0.5,0.7,0.9], boundary radius weights [0.8,1.0,1.2], and non-
decision time weights [0.15, 0.2, 0.25] (Villarreal et al., 2024).

The design matrices for drift angle, drift magnitude, boundary
radius, and non-decision time parameters were:

1 0 0 1 00
01 0 01 0

Xoo =10 o0 1] %=lo 0o 1|
01 0 01 0
1 00 1 00
01 0 01 0

Xe=10 0 1] =10 0 1
1 00 0 0 1

where each row corresponds to a condition and each column
corresponds to a regression weight. Each condition had n = 100
trials. We conducted 10,000 simulation repetitions, computing
credible intervals at the 95% confidence level using EZ bootstrap
(with 1000 bootstrap samples).

The method maintained excellent calibration: For drift angle
weights, coverage rates were 89.5%, 94.5%, and 94.2% across
the three weights. For drift magnitude weights, coverage rates
were 94.5%, 94.4%, and 89.3%. For boundary radius weights,
coverage rates were 95.8%, 94.8%, and 93.0%. For non-decision
time weights, coverage rates were 95.8%, 94.6%, and 95.7%. All
coverage rates were within expected sampling variation of the
nominal 95% level.

Computational performance. For Study 1, the method required
a mean of only 0.33 ms per estimation (SD = 0.03 ms), enabling
rapid uncertainty quantification. For Study 2, with the added com-
plexity of the design matrix, the method required a mean of 1.26 ms
per estimation (SD = 0.19 ms).

Other models

The EZ bootstrap method generalizes to any model in the EZ class
—that is, any model with analytical forward and inverse equations
smoothly mapping parameters to summary statistics. Here we
briefly describe one additional example: the one-high-threshold
source-monitoring multinomial processing tree (MPT) model.
One-high-threshold source-monitoring model. The one-high-
threshold source-monitoring MPT model (Batchelder & Riefer,
1990, 1999) is a multinomial processing tree model for source
memory that allows participants to identify items as coming from
Source A, Source B, or as new. The model has four parame-
ters: detection probability D, source discrimination probability d,
criterion for new items ¢, and guessing probability g.

The forward equations map parameters to observed response
proportions. For old items from Source A, the forward equations
are:

Aa Dd+ (1—D)g
Ba D(1—d)+ (1 -D)(1—g)

where A4 = P(“A” | old from A) and B4 = P(“B” | old from A).
Analogous expressions hold for old items from Source B:

Ag D(1—-d)+(1—-D)g
Bg Dd+(1—-D)(1—g)
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where Ag = P(“A” | old from B) and Bg = P(“B” | old from B).
For new items, the model specifies:

Ny = ¢
Ay = (1-qyg
Bn (1-c)(1-y9)
where Ny = P(‘new” | new), Ay = P(“A” | new), and

By = P(“B”| new). The inverse equations provide closed-form
parameter estimates:

c = NN

— AN
9 7 T-Ny
D - Aa+Ap—2g
1—2g
J - As—(1—-D)g

D

These linear relationships allow closed-form inversion, illustrating
a simple but nontrivial MPT for which both forward and inverse
transformations are available in closed form.

The sampling distributions for MPT models are multinomial: the
observed counts in each response category follow a multinomial
distribution with probabilities given by the forward equations. For
old items from Source A, the counts (na ,,ns, ) follow:

(na,,nB,) ~ Multinomial(na, (Aa, Ba))

where n 4 is the number of old items from Source Aand As+Ba =
1. Similarly, for old items from Source B:

(nag,nBg) ~ Multinomial(ns, (As, Br))

where np is the number of old items from Source B and Ap +
Bp = 1. For new items:

(nNN,nAN,nBN) ~ Multinomial(nN, (NN,AN,BN))

where n y is the number of new-item trials and Ny + Ax + By =
1. The EZ bootstrap procedure can be applied by resampling
from these multinomial distributions and transforming through the
inverse equations to obtain bootstrap parameter estimates.

We provide this solvable MPT example only as an illustration.
The class of MPT models with tractable analytical inverses is rather
narrow and does not reflect the complexity of most MPT applica-
tions, where estimation usually requires numerical optimization or
Bayesian inference (Matzke, Boehm, & Vandekerckhove, 2018).

Discussion

The EZ bootstrap method provides fast uncertainty quantification.
It maintains proper calibration while achieving dramatic speed
improvements over previous methods such as the Bayesian imple-
mentation by Chavez De la Pefia and Vandekerckhove (in press) —
the method achieves coverage rates that closely match nominal
levels for both simple single-condition models and more complex
design matrix extensions.

The method’s success relies on the synthetic likelihood struc-
ture of EZ models. By operating directly on summary statistics
with known sampling distributions, we avoid the computational cost
of raw data resampling while preserving statistical validity. The
transformation-of-variables approach generalizes to any model in
the EZ class — that is, any model with invertible mappings from
parameters to summary statistics. The calibration results illus-
trate that our method maintains proper statistical properties while
delivering computational efficiency.
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Limitations. The bootstrap method has a few limitations worth
pointing out. First, the method is limited to the class of EZ models
and their design matrix extensions. While identifiable models
will typically have both the forward and inverse equations, the
equations are often not known or are mathematically inconvenient.
Second, the method requires that summary statistics have known
or approximately known sampling distributions. Approximations
such as the normal distribution for mean RT and the Gamma
for variance are asymptotically valid but may be less accurate
for very small samples (n < 30) or when RT distributions are
highly skewed, but good approximations of sampling distributions
are known for very many summary statistics. Third, we assume
approximate independence between summary statistics. While
this holds asymptotically and is approximately valid for sufficiently
large samples, correlations may be non-negligible for very small
samples or models beyond our consideration.

Future directions. Several extensions are possible. The method
could be extended to yet more models with known mappings from
parameters to summary statistics. Hierarchical extensions could
enable multi-level modeling with summary statistics. Integration
with experimental platforms could enable real-time semi-Bayesian
design optimization and computerized adaptive tests.

Perhaps most promisingly, implicit mappings from parameters
to summary statistics exist even when explicit equations are un-
known. Techniques from statistical learning, such as normalizing
flow neural networks, could be used to approximate these map-
pings for use in the synthetic bootstrap method, extending the
approach to a broader class of models.

Computational reproducibility

All code associated with this project is available via GitHub. The
simulation studies reported in this paper can be reproduced
using the C implementation available in the GitHub repository
joachimvandekerckhove/ez-bootstrap. The implementation
requires the GNU Scientific Library (GSL) for random number
generation and statistical distributions.

To reproduce the simulation studies, first (1) clone the repository,
then (2) install dependencies if needed (e.g., install 1ibgsl-dev
to obtain GSL development libraries on Debian/Ubuntu systems),
and (3) run the simulation script . /run_all.sh.

The script executes both simulation studies for the EZ-DDM
and EZ-CDM with the following editable parameters: 10,000 sim-
ulation repetitions, sample size n = 100 trials per condition, and
1,000 bootstrap samples per repetition. The simulation outputs
include coverage rates for each parameter (or beta weight) and
computational performance metrics.

A Python implementation of the EZ-DDM is also available
as part of the larger EZAS package (https://github.com/
joachimvandekerckhove/ezas), which uses the same method
but is not as fast as the C implementation.
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