
AUTHOR

FI
NAL

VERSIO
N

Bayesian graphical modeling with the circular drift
diffusion model
Manuel Villarreala, Adriana F. Chávez De la Peñaa, Percy K. Mistryb, Vinod Menonb, Joachim Vandekerckhovea, and Michael D. Leea,*

This is the author final version of:
Villarreal, J., Chávez De la Peña, A. F., Mistry, P., Menon, V. E., Vandekerckhove, J., & Lee, M. D. (2024). Bayesian graphical modeling with the circular drift diffusion model.
Computational Brain & Behavior, 7, 181-194.

The circular drift-diffusion model (CDDM) is a sequential sampling model designed to account for decisions and response times in decision-
making tasks with a circular set of choice alternatives. We present and demonstrate a fully Bayesian implementation and extension of the
CDDM. This development allows researchers to apply the CDDM to data from complex experiments and draw conclusions about targeted hy-
potheses. The Bayesian implementation relies on a custom JAGS module. We describe the module and demonstrate its adequacy through a
simulation study. We then illustrate the advantages of the implementation by revisiting data from a continuous orientation judgment task. We
develop a graphical model for the analysis that is based on the CDDM, but extends it with hierarchical and latent-mixture structures. We then
demonstrate how these extensions are used to accommodate the design of the experiment and to implement psychological assumptions
about individual differences, the difficulty of different stimulus conditions, and the impact of cues on decision making. Finally, we demon-
strate how the computational Bayesian inference enabled by JAGS allows these assumptions to be tested and addresses psychological
research questions about people’s decision making.

The circular drift-diffusion model (CDDM; Smith, 2016) is a se-
quential sampling decision model that extends the widely used
drift-diffusion model (DDM; Ratcliff, 1978; Ratcliff & McKoon, 2008)
to the circular domain. In the classical DDM, it is assumed that
evidence from a stimulus is repeatedly sampled until a boundary is
reached, at which point the decision associated with that boundary
is made. The model makes predictions about both the decisions
people make and the time they take to make them. The DDM is
designed for tasks with discrete decisions and is most often applied
to two-choice tasks.

The CDDM considers situations in which the boundary of ev-
idence accumulation is an encompassing circle. This extension
implies that there exists a continuum of possible decisions, cor-
responding to points on the circle, and that there is a similarity
relationship between the decision alternatives. Figure 1 provides
three examples: choosing a color from a color wheel, choosing
the spatial direction of a voice, and choosing a time in a calendar
year. The CDDM has been applied to decision tasks including the
detection of hues (Kvam et al., 2022), targets presented in visual
displays (Smith & Corbett, 2019), the orientation of line segments
(Kvam, 2019), and in the absolute identification of line lengths
(Kvam et al., 2022).

In this article, we introduce a custom JAGS module that imple-
ments the CDDM. JAGS is a high-level scripting language for imple-
menting probabilistic generative models and automating Bayesian
inference using computational sampling methods (Plummer, 2003).
JAGS is widely used to develop, evaluate, and apply cognitive
models (Lee & Wagenmakers, 2013). There are at least two rea-
sons to develop custom modules. The first, as demonstrated by
Wabersich & Vandekerckhove (2014) for the DDM, is that it makes
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Fig. 1. Examples of circular decisions. The top left panel shows a hue identification
task where the color of the shirt has to be located along the color wheel. The bottom
left panel illustrates a situation in which a person must spatially locate the source of a
relevant auditory stimulus (e.g., a voice). The right panel presents the decision space
for questions about the occurrence of an event of interest during the calendar year.

non-standard statistical distributions available. Sometimes, when
a new distribution is composed of combinations of standard dis-
tributions, this is just a matter of convenience. Other times, when
the probability density function of the new distribution relies on
procedural calculations that are not part of the base JAGS lan-
guage, a module is needed to make it available at all. The second
advantage of custom modules, as argued by Lee (2011, 2018), is
that they facilitate the development of tailored graphical models.
In particular, JAGS makes it easy to construct hierarchical, latent
mixture, and common cause models in order to capture the context
in which behavioral data are observed, and to allow models to
answer specific research questions.

The structure of this article is as follows. We begin by provid-
ing a statistical specification of the CDDM. We then implement
the CDDM in JAGS and present the results of a parameter recov-
ery study that demonstrates the accuracy of our implementation.
To illustrate the use of the module, we present an application to
data collected in a continuous orientation judgment task by Kvam
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(2019). Our application is based on a graphical model that extends
the CDDM with hierarchical and latent-mixture structures. These
extensions allow the model to accommodate the design of the
experiment and to implement psychological assumptions about
individual differences, the difficulty of different stimulus conditions,
and the impact of cues on decision making. We demonstrate how
the computational Bayesian inference enabled by JAGS allows
these assumptions to be tested, and addresses psychological re-
search questions about people’s decision making. We conclude
with a discussion of possible applications of the CDDM within
JAGS, including potential extensions to decision tasks in which the
circular continuum is partitioned into a set of structured discrete
choice alternatives.

The Circular Drift Diffusion Model

The CDDM assumes that evidence for a decision begins at the
origin of a circle and is accumulated sequentially in time until the
evidence tally reaches the circumference. Evidence accumulation
is represented as a two-dimensional random walk, such that the
evidence state st at any point in time t can be described using
Cartesian coordinates st = (xt, yt), or the corresponding polar
coordinates mt and dt, where mt is the radial distance from the
origin and 0 ≤ dt < 2π is the angular orientation in radians.
Once the evidence accumulation reaches the circumference, the
corresponding decision alternative is selected. The result of this
process on each trial is a two-dimensional outcome containing
the angle of the alternative selected in radians and the associated
response time.

The CDDM requires at least four parameters to describe the re-

sponse process. The non-decision time τ ≥ 0 is the fixed amount
of time that participants take to encode stimulus information and
execute a motor response. The boundary radius η > 0 determines
the amount of evidence required before committing to a decision.
The drift angle 0 ≤ θ ≤ 2π represents the angular direction in radi-
ans of the decision alternative favored by the stimulus presented.
Finally, the drift length δ > 0 indicates the speed with which the
participant accumulates information towards the decision implied
by the drift angle θ. Together, the drift angle θ and drift length δ
describe the information provided by the stimulus and its effect on
the speed and direction of the evidence accumulation process. The
drift angle θ and drift length δ correspond to the polar coordinates
of the drift vector µ = (µx, µy) that specifies the mean step size of
the random walk process on the x and y dimension, respectively, in
Cartesian coordinates. Translating between these two coordinate
systems is straightforward using the following system of equations:

δ =
√
µ2
x + µ2

y

θ = arctan
(
µy
µx

)
[1]

(µx, µy) = (δ cos (θ) , δ sin (θ)) .

Much like in other sequential sampling models, the non-decision
time and boundary radius are assumed to be fixed across trials
while the drift parameters describing the information provided by
the stimuli are assumed to vary. At any given moment in time t,
the evidence accumulated along the x and y axes st = (xt, yt) is
assumed to be independent and identically distributed, such that
xt ∼ Gaussian

(
µx, σ

2) and yt ∼ Gaussian
(
µy, σ

2).

The CDDM likelihood function. An attractive property of the CDDM is that the implied distribution of data given parameters is
computationally tractable. The bivariate probability density function, which expresses the joint probability density of decision c and
reaction time t, is given by (Qarehdaghi & Rad, 2022; Smith, 2016):

p (c, t | δ, θ, η, τ) = σ2

2πη2 exp
(
− 1

2σ2

[
δ2(t− τ)− 2ηδ cos (c− θ)

])
×

+∞∑
k=1

[
j0,k

J1(j0,k) exp
(
− 1

2η2 (t− τ)j2
0,kσ

2
)]

[2]

⇔ (c, t) ∼ CDDMo (δ, θ, η, τ) ,

or equivalently in Cartesian coordinates:

p (c, t | µx, µy, η, τ) = σ2

2πη2 exp
(
− 1

2σ2

[(
µ2
x + µ2

y

)
(t− τ)− 2η(µx cos(c) + µy sin(c))

])
×

+∞∑
k=1

[
j0,k

J1(j0,k) exp
(
− 1

2η2 (t− τ)j2
0,kσ

2
)]

[3]

⇔ (c, t) ∼ CDDM+ (µx, µy, η, τ) .

Throughout, we will choose σ = 1 to identify the model. In these two functions, J1() and j0,k are, respectively, a first-order Bessel
function of the first kind and the kth zero of a zero-order Bessel function.

The left panel of Figure 3 provides an illustration of the CDDM. A number of evidence accumulation paths from the origin to the
circumference are shown, and the shading along the circumference shows the resulting distribution of decisions. This marginal distribution
of decisions is shown again in the top right panel and the marginal distribution of response times is shown in the bottom right panel.
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Fig. 2. In the CDDM, the evidence accumulation process is a two-dimensional random
walk from the origin of a circle to its circumference. The boundary radius η determines
the amount of evidence required before committing to an answer. The drift vector
µ = (µx, µy) specifies the mean step size on the x and y coordinates. The drift
vector can also be expressed in polar coordinates, with the drift angle θ and drift length
δ indicating the average direction and speed of the random walk. The non-decision
time parameter τ is not depicted.
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Fig. 3. An illustration of the distribution of decision and response times predicted by
the CDDM. The left panel shows different random walks observed over 100 trials,
with the shaded points along the circumference indicating the decisions registered
every time. All random walks present a decision process with the same boundary
radius, non-decision time, and drift vector parameters. The top right panel shows
the observed distribution of decisions in radians. The bottom right panel shows the
positively-skewed observed distribution of response times.

JAGS Implementation of the CDDM

Custom Module. The steps to constructing a custom JAGS mod-
ule are laid out in Wabersich & Vandekerckhove (2014). The
process has become more efficient since the publication of that
tutorial, in that there now exist a number of repositories1 with ex-
ample modules that can be used as a starting point, and in particu-
lar the jags-moduleTemplate repository https://github.com/
raviselker/jags-moduleTemplate/ by Selker (2018a). With
these resources, the remaining effort in creating a JAGS mod-
ule is in the writing of applicable logDensity functions and
a handful of housekeeping functions such as typicalValue
and checkParameterValue. Because the CDDM likelihood is
vector-valued (i.e., the model applies to bivariate data), the
module defines VectorDist (vector-valued distribution) objects

1Some examples are jags-wiener (Wabersich, 2018), jags-vonmises (Wabersich, 2016b), jags-
amoroso (Wabersich, 2016a), jags-exgauss (Selker, 2016), and jags-rescorlaWagner (Selker,
2018b).

with length 2. The module2 can be obtained via https://
github.com/joachimvandekerckhove/jags-cddm/. The core
code for the density function evaluation can be found in
src/distributions/DCDDM.cc. That file implements the loga-
rithm of the Cartesian formulation of the likelihood given in Equa-
tion 3: ` (c, t | µx, µy, η, τ) ≈

− log
(
2πη2)− t− τ

2
(
µ2
x + µ2

y

)
+ η(µx cos(c) + µy sin(c))

+ log

(
50∑
k=1

[
j0,k

J1(j0,k) exp
(
− t− τ2

j2
0,k

η2

)])
. [4]

The polar version of the likelihood is implemented by trans-
forming the input parameters using System 1 and then calculating
Equation 4. Note that j0,k/J1(j0,k) and j2

0,k are only a function
of the summation counter k and not of any of the function’s pa-
rameters or variables, so they can be precomputed for speed. We
approximate the infinite sum by computing only the first 50 terms,
which we have found to be sufficient – the contribution of the 50th

term is less than 0.1% of the total sum as long as the scaled time
factor (t− τ)/η2 is at least 0.004.

Usage. The README.md file of the repository provides installation
instructions. Once the module is installed, it can be loaded in
JAGS with load cddm. Loading the module will enable two new
distributions with the following templates. For CDDMo():

X[1:2,i] ~ dcddmpolar(driftLength, driftAngle,
bound, nondecision)
and for CDDM+():

X[1:2,i] ~ dcddmcartn(driftx, drifty, bound,
nondecision)
In both cases, X[1,i] is the decision in radians and X[2,i] is
the eaction time in seconds. dcddmpolar() takes the parameters
expressed in polar terms (δ, θ, η, τ) and dcddmcartn() takes the
parameters expressed in Cartesian terms (µx, µy, η, τ). All input
parameters are scalars.

The θ parameter exists in a circular domain, which somewhat
complicates the MCMC sampling, especially if its posterior distribu-
tion has significant mass near the edge of the (arbitrarily chosen)
2π-interval over which it is defined. While these complications are
not insurmountable, we generally prefer the Cartesian implementa-
tion.

Parameter Recovery Study. We tested the accuracy of the CDDM
module in simulation studies that examined separately the param-
eter recovery of the Cartesian and polar coordinates implemen-
tations of the module. We selected a small number of values for
every parameter in the model and used them to simulate 200 in-
dependent data sets for every possible parameter combination.
We then applied the JAGS module and compared the parameter
values retrieved to those used to generate the data sets. Param-
eter recovery was evaluated using the distribution of the mean
posteriors obtained across every data set generated using every
parameter value. Note that this recovery study does not assess
the CDDM model, nor does it allow us to evaluate the effectiveness
of the Bayesian statistical methods used to make inferences. Re-
covery studies do provide a method for checking the correctness
of the implementation of the JAGS module, and for understanding

2For computational reproducibility, the GitHub repository also includes instructions for setting up a
virtual machine—a curated computational environment—that includes an operating system with
appropriate compilers and software versions that support the module.
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the informativeness of experimental designs with respect to the
CDDM and its parameters.

We used three different values of boundary radius η ∈
(1.5, 2.0, 2.5) and non-decision time τ ∈ (0.1, 0.2, 0.3). For
the recovery study testing the polar coordinate implementation
of the module, we used three different values of drift angle
θ ∈ (0.0, 2.0, 4.0) and drift length δ ∈ (0.01, 1.0, 2.0), while for
Cartesian coordinate implementation we used four mean step size
levels on the x and y coordinates, µx ∈ (−0.5, 0, 0.5, 1) and
µy ∈ (−1,−0.5, 0, 0.5). Altogether, this resulted in 81 different
parameter combinations in the polar implementation and 144 pa-
rameter combinations in the Cartesian implementation.

Posterior estimates were computed across four chains with
2500 recorded samples each after 500 discarded burn-in samples.
All chains converged, using R̂ < 1.05 as a criterion (Gelman et al.,
2013). Note that chain convergence for the drift angle θ parameter
in the polar implementation was evaluated after having transformed
the posterior samples into the constrained interval 0 ≤ θ < 2π.
This transformation was conducted using modular algebra.

The results of the parameter recovery studies are shown in
Figures 4 and 5 for the Cartesian and the polar coordinate im-
plementations of the module, respectively. In these figures, each
panel presents the distribution of the posterior means obtained
across all data sets that shared the same true value of that param-
eter (regardless of the values of the other parameters).3 Overall,
parameters are recovered well: there are no systematic errors from
the “true” parameter values used to generate the data, and the
variability around these values is acceptably small with sample size
200. These results provide confirmation that the CDDM probability
density functions in our JAGS module are correctly implemented.

Application to Modeling Orientation Judgments

Kvam (2019) Experiment. Kvam (2019) considered a task in
which participants estimated the mean orientation of a sequence
of rapidly-presented Gabor patches. The design of the task is
summarized in Figure 6. Trials were divided into four main blocks
with two independent factors: speed versus accuracy instructions,
and cued versus uncued conditions. For speed trials, participants
gained more points for responses made within 800ms of stimulus
onset, while for accuracy trials participants earned more points the
closer their estimates were to the true mean. Participants were
told at the beginning of each block whether they were a part of the
speed or accuracy condition, and they were also reminded of the
condition with the words “SPEED” or “ACCURACY” at the beginning
of each trial.

Once a trial started, participants were shown either a green
line with a fixed orientation (cued condition) or a green circle at the
center of the screen (uncued condition). Following the presentation
of the line or circle, participants were shown a rapid sequence of
Gabor patches, drawn every 16.7 ms at 60 Hz, with orientations
varying according to a Gaussian distribution centered at the true
mean orientation with a fixed standard deviation. The standard
deviations of the distribution of the samples were used to set
three difficulty conditions—low, medium and high—with standard
deviations of 15, 30 and 45 degrees respectively. A cue could
have a deflection of 0, 20, 50, or 70 degrees in a clockwise or
counterclockwise direction from the true mean orientation of the
Gabor patches.

3The bottom right panel of Figure 5 excludes cases where the drift length δ true value was close to
0 (i.e., δ = 0.01), as the drift angle is unidentified in that case.
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Fig. 4. Results of the parameter recovery study conducted using our Cartesian
coordinate implementation of the CDDM. Every panel shows the distributions of
posterior means obtained across data sets generated using each parameter value. All
panels present the results obtained across three simulation studies that considered
a sample size of n = 80, n = 200 and n = 500, respectively. The black dashed
lines indicate the true values.
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Fig. 5. Results of the parameter recovery study conducted using our polar coordinate
implementation of the CDDM. Every panel shows the distributions of posterior means
obtained across data sets generated using each parameter value. All panels present
the results obtained across three simulation studies that considered a sample size
of n = 80, n = 200 and n = 500, respectively. The black dashed lines indicate
the true values. Note that the drift angle parameter becomes undefined as the drift
length approaches 0, so the lower right panel excludes all results from the δ = 0.01
condition.
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Fig. 6. The design of a trial in the orientation judgment task considered by Kvam
(2019). After either being cued by a line or not being cued, a sequence of Gabor
patches with a mean orientation was presented. Participants could respond at any
time to indicate the mean orientation. Based on Kvam (2019, Figure 2).

Participants could respond at any point during the presentation
of the sequence of patches by moving their mouse to the edge of
a response circle on the screen. The point at which they reached
the edge defined their decision for the trial.

To simplify our analysis of the experiment, we consider only
six of the twelve participants, chosen to be representative of the
overall range of individual differences. We also only use the cued
condition, since modeling the potential influence of a cue allows us
to highlight some of the features of implementing the CDDM within
JAGS.

Research Questions. We address four research questions related
to the Kvam (2019) experiment. These research questions were
not chosen because they are the most important ones in terms of
understanding human perceptual decision making. Instead, they
were chosen to demonstrate the flexibility of graphical models to
formalize assumptions about psychological processes, and the
usefulness of Bayesian methods to answer research questions.

The first research question is whether participants are more
cautious when they are instructed to prioritize accuracy over speed.
Statistically, this involves testing whether the boundary radius for a
participant is the same or different in the speed versus accuracy
conditions. The second research question is whether the speed of
information processing decreases as the variability of the Gabor
stimuli increases and the task becomes more difficult. Statistically,
this involves testing whether the drift length satisfies an order
constraint by decreasing monotonically with task difficulty. The
third research question is whether participants sample information
less consistently as the task becomes more difficult. This involves
testing whether the variability of the drift angle satisfies an order
constraint by increasing monotonically with task difficulty.

The final research question is less standard than the first three,
and requires the most elaborate modeling. It asks whether pos-
itive and negative deflections of cues have different impacts on
participants’ decision making. In particular, it considers the possi-
bility that, on each trial, a participant could use either the cue or
the Gabor stimuli as the basis for their orientation judgment. Ad-
dressing this question involves testing whether the base-rate with
which each source of information is used is the same or different
for cue deflections of the same magnitude but different directions.
Our main motivation with this research question is that it seems
likely the base-rates will be the same. This allows us to consider
the ability of Bayesian inference to find evidence for sameness,
indicating equivalence or invariance, rather than just the ability to
find evidence for differences, indicating the presence of effects.

Graphical Model. Figure 7 shows the graphical model we devel-
oped for this analysis. The decision and RT data are represented
by the yisdct node at the center of the model. This node is shaded
and circular because the data are observed and continuous. It is

at the intersection of encompassing plates for trial t of participant i
with cue deflection c in speed-accuracy condition s and difficulty
condition d.

yiscdt ∼ CDDMo (δid,mod(θisdct, 2π), ηid, τi) [5]

The four CDDM parameters—drift angle, drift length, boundary
radius, and nondecision time—are represented by the four nodes
that are the parents of the yisdct node. These nodes have different
colors, and other nodes in the graphical model associated with
each parameter share the same color. This helps visually parse
the graphical model into the assumptions it makes about drift angle,
drift length, boundary radius, and nondecision time.

Drift angle. The drift angle θisdct is represented by an unshaded
node because it is latent. We assume that there are two qualita-
tively different possibilities for the drift angle on each trial.4 It can
either be based on the mean orientation of the presented stimuli, or
on the cue. These two possibilities are φisdct and qisdct, which are
known properties of the trial, and hence represented by shaded
nodes.

Which value θiscdt takes is determined by a latent binary indi-
cator zisdct, represented by a square node because it is discrete.
Formally,

θisdct ∼
{

Gaussian
(
φisdct, τ

θ
id

)
if zisdct = 0

Gaussian
(
qisdct, βiτ

θ
id

)
if zisdct = 1. [6]

The binary indicator follows a Bernoulli distribution with a base rate
that depends on the participant and the cue deflection

ziscdt ∼ Bernoulli
(
ωic
)
. [7]

The base-rate with which participant i uses cues with deflection c
is assumed to be ωic.

Since our research goals include testing whether ωic changes
for positive versus negative cue deflections with the same magni-
tude, we define

ωic
1− ωic

=

{ exp (µωia + γωia/2) if c > 0
exp (µωia − γωia/2) if c < 0
exp (µωia) if c = 0.

[8]

These definitions mean that µωia controls the bias on the logit
scale towards using the cue or stimulus information for deflection
magnitude a, while γωia is an effect size on the logit scale between
positive and negative deflections of the same magnitude. This part
of the graphical model provides an example of creating a structure
to test research hypotheses. In particular, comparing the prior and
posterior on the log effect size γωia provides a principled way to
estimate Bayes factors testing whether or not participants have
different base-rates for positive versus negative cue deflections
with the same magnitude.

Depending on whether the stimulus or the cue is used, different
precisions apply to how accurately the drift angle follows this infor-
mation. These precisions are represented by the parameters τθid
and βi. We assume that there are individual differences in stimulus
information precision that depend on the stimulus difficulty. For
person i in difficulty condition d,

τθid ∼ log-Gaussian

(
µτ

θ

d ,
1(

στθ
)2

)
[9]

4Other assumptions are possible, such as drift angle being some weighted combination of cue and
stimulus information. While these more complicated possibilities could certainly be implemented,
we consider just the simplest case in which drift angle is determined by one or the other.
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with priors on the mean and standard deviation that define the
Gaussian distribution of individual differences:

µτ
θ

d ∼Gaussian
(
0, 1
)

[10]

στ
θ

∼ uniform
(
0, 4
)
. [11]

Note that the assumption is that the mean changes with stimulus
difficulty, but the variability of individual differences is the same for
all of the different levels of stimulus difficulty.

The cue information has a precision that is proportional to that of
the stimulus information for the trial depending on each participant.
This requires defining the constant of proportionality βi for person
i as

βi ∼ uniform
(
0, 1
)
. [12]

This means that the variability of the information provided by the
cue distribution is always equal or greater to the stimulus one.

Drift length. We assume there are individual differences in the drift
lengths δid that depend on stimulus difficulty. For person i in
difficulty level d

δid ∼ log-Gaussian
(
µδd,

1
(σδ)2

)
. [13]

with priors

µδd ∼Gaussian
(
0, 1
)

[14]

σδ ∼uniform
(
0, 1
)
. [15]

As was the case for the base-rate of cue versus stimulus use, we
assume that only the mean changes with stimulus difficulty, but the
variability of individual differences is the same.

Boundary radius. The boundary radius ηis are assumed to be inde-
pendent across both participants and speed-accuracy conditions.
In order to test whether speed-accuracy instructions affect a partic-
ipant’s boundary radius, ηis is defined in the model in terms of the
mean boundary radius on the log scale µηi for participant i over
both conditions, and the effect size difference on the log scale γηi .
This leads to the definitions:

ηis =
{

exp (µηi + γη
i /2) if s = accuracy

exp (µηi − γη
i /2) if s = speed . [16]

This part of the graphical model provides a second example
of creating a structure to test research hypotheses. In particular,
comparing the prior and posterior on the log effect size γηi provides
a principled way to estimate Bayes factors testing whether or not
participants use different boundaries in speed versus accuracy
conditions.

Nondecision time. Finally, nondecision time does not have any addi-
tional model structure, and each participant is independently given
the prior

τi ∼ uniform
(
0,min yi1

)
, [17]

where min yi1 represents the minimum response time for partici-
pant i over all trials.

Results. The results of analyses addressing the four research
questions are presented in the four panels of Figure 8. The anal-
yses are based on four chains with 5000 recorded samples after
45000 discarded burn-in samples. Once again, we only considered
convergent chains with R̂ < 1.05.

The first research question about differences in caution is ad-
dressed by Figure 8A. The panel shows the posterior samples of
the boundary radius parameters ηis for each participant in both
speed and accuracy conditions. For most of the participants, it
is clear that the posterior distribution of the parameter for the ac-
curacy conditions is higher. The η column of Table 1 confirms
this result in terms of Bayes factors comparing the order-restricted
alternative hypothesis that the accuracy condition boundary radius
is greater to the null hypothesis that the boundaries are the same.
These Bayes factors are approximated using the Savage-Dickey
method (Wetzels et al., 2010). For every participant except par-
ticipant 3 the Bayes factor is greater than 1000 in favor of the
hypothesis that the boundary radius is higher for accuracy trials.

The second research question about the speed of information
processing and task difficulty is addressed by Figure 8B. The panel
shows the posterior distribution of the drift length δid for each
participant and task difficulty. It is clear that the order constraints
are followed by all of the participants except for participant 1. The
δ columns of Table 1 confirm this result in terms of the posterior
probability that the drift lengths satisfy the order constraint. For
participant 1, the posterior probability of the order constraints is
close to 0, however, for the rest of participants it is higher than 0.8.

The third research question about the consistency of informa-
tion and task difficulty is addressed by Figure 8C. The panel shows
the posterior distributions of the standard deviation of stimulus
information 1/

√
τθ for each participant and task difficulty. It is

clear the order constraint is followed by all six participants. The
σ column of Table 1 confirms this result in terms of the posterior
probability that the standard deviations satisfy the order constraint.
The posterior probability of the order constraints is close to 1 for
all participants.

The final research question about whether positive and nega-
tive deflections have different impacts on cue use is addressed
by Figure 8D. The panel shows the posterior distribution of the
base-rate of stimulus use for each participant and deflection an-
gle. The values of the base-rate show that participants generally
used the stimulus information on the majority of trials. Comparing
the positive (unfilled) and negative (filled) deflections of the same
magnitude suggests the base-rates are often similar. The Bayes
factors testing for the sameness or difference of the base-rates are
presented in the ω columns of Table 1, expressed in terms of evi-
dence for a difference. Most of the Bayes factors are close to one,
indicating there is not clear evidence in favor of either hypothesis.
This provides an example of the ability of using Bayes factors with
the CDDM not only to find evidence for sameness (the null) or a
difference (the alternative), but also to fail to find clear evidence
for either. The obvious conclusion is that more data are needed to
address this research question.

Discussion

Our application to modeling orientation judgments highlights the
usefulness of the JAGS implementation of the CDDM. Graphical
models provide a high-level language for probabilistic psychologi-
cal models for constructing tailored CDDM models that deal with
circular decisions and response times. The graphical model we
developed has the CDDM at its core, predicting behavior on each
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Fig. 7. Graphical model for the reanalysis of cued orientation judgment from Kvam (2019).

Table 1. Bayes factors and posterior probabilities of order constraints addressing the four research questions.

Bayes Factors Posterior Probabilities

Participant η ω±20 ω±50 ω±70 δ15 > δ30 > δ45 σ15 < σ30 < σ45

1 > 1000 1.251 1.675 2.766 0.004 0.997
2 > 1000 1.223 7.965 1.691 0.997 0.996
3 9 1.030 1.158 1.782 0.941 0.999
4 > 1000 1.175 1.066 1.565 0.866 0.999
5 > 1000 0.986 1.945 1.685 0.992 0.999
6 > 1000 2.072 1.110 1.607 0.961 0.999
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Fig. 8. Posterior distributions of the parameters of interest, with parameter values
on the y-axis and participants on the x-axis. Panel A shows the boundary radius
parameter η for the accuracy (blue) and speed (purple) conditions. Panel B shows
the drift length parameter δ for each difficulty condition, 15 (blue) 30 (green), and 45
(orange) degrees. Panel C shows the standard deviation of the drift angle 1/

√
τθ for

each difficulty condition. Panel D shows the mixing probability φ for the 20 degrees
(blue), 50 (green), and 70 (orange) cue deflection conditions. Filled histograms
indicate negative (negative) deflection trials.

trial, but makes assumptions about how model parameters change
over trials, stimuli, and people that are specific to the experimen-
tal design that generated the data and the motivating research
questions.

As argued by Lee (2011, 2018), there are two complementary
features of this approach. One feature is that graphical models
afford significant freedom and flexibility in model development. A
wide range of theoretical assumptions can be implemented, tested,
and used. The model of orientation judgments we developed made
extensive use of hierarchical and latent-mixture structures, which
allow for more theory to be incorporated. For example, instead of
treating the drift angle as a free parameter to be estimated, our
model formalized the idea that people could use either cue or stim-
ulus information, that this choice could depend on the deflection
between the cue and stimulus, and that direction information was
perceived differently by different participants. The goal of psycho-
logical modeling is to develop accounts that are as general and
complete as possible, and graphical models provide the ability to
propose ambitious accounts of people’s behavior.

The second noteworthy feature of graphical modeling is that the-
oretical freedom is complemented by methodological rigor. What-
ever model is proposed, its contact with data is governed by
Bayesian inference, which by virtue of following the laws of probabil-
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Fig. 9. Categorical-choice extensions of the CDDM. The left panel considers the
color identification situation in Figure 1 for a task in which the choice options are color
words. The right panel considers the voice direction situation for a task in which the
choice options are the names of the possible speakers.

ity is complete, consistent, and coherent (Cox, 1961; Jaynes, 2003).
This means that psychological models are evaluated against data
in a way that is sensitive to goodness-of-fit and model complexity,
and prevents overly ambitious models that over-fit the data (Pitt et
al., 2002).

Our application to orientation judgments used Bayes factors to
find evidence for a null hypothesis regarding the direction of deflec-
tions, which is an example of how Bayesian evaluation can lead
to a proposed model being rejected and a psychologically simpler
model being preferred. Our application also provided examples in
which model assumptions were justified using quantified evidence
provided by the data. One example was the Bayes factor for the
difference between boundaries for speed and accuracy conditions.
Another was the probability of order constraints relating drift rates
to different types of stimuli.

Beyond hierarchical and latent-mixture structures, graphical
modeling in JAGS offers a number of other possibilities not demon-
strated in our application. One is what Lee (2011, 2018) calls
common-cause modeling, in which the same psychological vari-
able is assumed to influence behavior observed in multiple contexts.
This idea is the basis for well-developed joint models of behavioral
and neural data, which are often implemented in JAGS (Turner et
al., 2019). The common cause idea, however, applies equally well
for linking multiple sources of behavioral data. For example, the
individual differences in how participants use the cue or stimulus
for direction information in the current orientation judgment task
may be related to their behavior in other perceptual attention tasks.
Constructing a graphical model that formalizes this possibility is
straightforward, requiring a graph structure in which the same pa-
rameter or parameters play a role in generating both sets of data
(e.g., Guan & Lee, 2018; Guan et al., 2020; Vandekerckhove, 2014;
Oravecz & Vandekerckhove, 2020).

Another possibility for future applications involves the extension
to categorical decision boundaries discussed by Smith (2016).
Within JAGS this could be achieved by censoring using the
dinterval distribution, which implements situations in which con-
tinuous quantities are only observed in terms of discrete outcomes.
Two examples are shown in Figure 9, highlighting how two of our
motivating circular decisions in Figure 1 involve discrete decisions.
In the left panel, the choice options for choosing the color of a
shirt are a set of color words. In the right panel, the direction of
the voice is indicated by naming the person speaking. To model
these sorts of discrete decisions, the continuous location on the
circular boundary of the CDDM must be censored according to
choice boundaries. JAGS provides a censoring capability directly
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Fig. 10. A categorical-choice extension of the CDDM to mathematical problems with
answers that are naturally represented on a semi-circle.

through its dinterval distribution.
Another possibility is the application of CDDMs to decisions that

are semi-circular in nature. That is, where there is a continuum of
possible decisions corresponding to points on a semi-circle, along
with a similarity relationship between the decision alternatives. The
difference from a classical circular decision structure is that the
end points of the decisions have the lowest degree of similarity.
One concrete example, shown in Figure 10 involves mathematical
problem solving where the answers lie on a number line that may
be represented as points on a semi-circle (e.g., Mistry et al., 2023).

Conclusion

Sequential sampling models, and especially the drift diffusion
model, are the most successful and widely used models of the
time course of human decision making. These models are capable
of making predictions about both the choices people make and the
time it takes them to make these choices. Most applications have
considered forced-choice two-alternative decision tasks, consistent
with a model architecture in which an evidence tally accumulates
over time towards one of two boundaries. More recently, the de-
velopment of model architectures that allow many evidence tallies
to accumulate towards many boundaries has led to applications
to tasks involving multi-alternative choice. These models assume,
however, that there is a finite set of nominally-scaled choice al-
ternatives. The CDDM extends the scope of sequential sampling
models to allow for choice and response time modeling in situations
where there is a continuum of choices that can be represented on
a circle. In this way, the CDDM opens up many new possibilities
for modeling the time course of human decision making.

An important part of realizing the promise of the CDDM is to
allow it to be used as the key component of models tailored to
specific tasks and data, and designed to answer specific research
questions. Embedding the CDDM within a graphical modeling
framework is one way to achieve this, because it allows the de-
velopment of very general probabilistic generative models of psy-
chological processes, and facilitates fully Bayesian inference via
computational methods. We implemented the CDDM as a module
within the JAGS graphical modeling language, and demonstrated
the accuracy of our implementation. We then demonstrated, in an
application to orientation judgments, how the CDDM can be used
to develop an account of task behavior that captures assumptions
about individual differences across stimulus and task conditions,
and can provide parameter inferences and model comparisons
that address research questions. We hope this application serves
as an example of how the CDDM can be used to model and under-
stand new research questions involving the time course of human
decision making.
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