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As the field of computational cognitive neuroscience continues to expand and generate new theories, there is a growing need for more

advanced methods to test the hypothesis of brain-behavior relationships. Recent progress in Bayesian cognitive modeling has enabled

the combination of neural and behavioral models into a single unifying framework. However, these approaches require manual feature

extraction, and lack the capability to discover previously unknown neural features in more complex data. Consequently, this would hinder

the expressiveness of the models. To address these challenges, we propose a Neurocognitive Variational Autoencoder (NCVA) to conjoin

high-dimensional EEG with a cognitive model in both generative and predictive modeling analyses. Importantly, our NCVA enables both the

prediction of EEG signals given behavioral data and the estimation of cognitive model parameters from EEG signals. This novel approach

can allow for a more comprehensive understanding of the triplet relationship between behavior, brain activity, and cognitive processes.

EEG | Decision making | Neurocognitive model | Drift-diffusion model | Variational Bayes | Deep learning | Latent-variable

models

Current approaches to understanding brain function empha-

size the search for statistical relationships between human

behavior and individual physiological measures (EEG, fMRI,

fNIRS, etc.; e.g. Itthipuripat et al., 2019). Behavioral mea-

sures, such as accuracy and speed of responses, reflect

latent cognitive processes that underlie decision making that

are not observed directly and must be inferred by cognitive

models (Lee & Wagenmakers, 2014). An ongoing challenge

in computational cognitive neuroscience research is formu-

lating the link between brain activity and latent cognitive

processes. Here, we present a novel approach that allows

a theoretical account of the cognitive process of decision-

making, and artificial neural networks to estimate a joint

latent space to link cognitive parameters to both neural sig-

nals and behavioral measures. This joint latent space model

is a valuable new framework for computational cognitive

neuroscience, allowing for new forms of inference and hy-

pothesis generation.

Previous work has focused on neurocognitive relation-

ships between human neural data and behavioral data in

decision-making tasks (Nunez et al., 2015, 2017, 2019; Lui

et al., 2021; Turner et al., 2013, 2016). The hierarchical

Bayesian models used in these projects make strong pre-

dictions about the relationships between brain activity and

the speed of decision-making. These models typically make

use of the drift-diffusion model (DDM; Ratcliff & McKoon,
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2008), a widely-used cognitive model in decision-making,

as their generative model of choice and reaction time data.

To integrate neural signals, these models require knowledge

of previously discovered features of the neural data (e.g.,

known functional signals in the cognitive neuroscience lit-

erature) that are then linked by prescribed (usually linear)

relationships to the latent cognitive variables in a Bayesian

hierarchical model. The resulting neurocognitive models test

the relationship between neural signals and cognitive vari-

ables, and enhance the accuracy of predictions of behavior

directly from brain signals (Turner et al., 2016; Nunez et al.,

2017). This can be thought of as one domain of the larger

field of model-based cognitive neuroscience (Forstmann &

Wagenmakers, 2015).

A limitation of this approach is that we must know in

advance which brain signals are possibly linked to cogni-

tive functions. However, advances in frameworks and tools

for neuroscience allow for the discovery of previously un-

known neural features that we could use to explain latent

cognitive variables. Ideally, such frameworks operate across

observations, experimental manipulations, and individual

differences. Deterministic models that leverage deep learn-

ing have been proposed for learning feature representation

of EEG data to analyze and decode brain activity (Roy et

al., 2019). As a notable example, Sun et al. (2022) have

proposed a SincNet-based neural network that made use

of EEG signals to learn the latent cognitive variables of the

DDM on individual decisions. This approach identifies time

windows of information processing and frequency bands that

can be used to predict latent processes directly from EEG

data as a trial-level association between neural features,

choice, and response time.

This work aims to develop a deep probabilistic method

for linking neural data from EEG to the latent parameters of
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(a) Generative Process

(b) Regularized Discriminative Process

Fig. 1. The Neurocognitive VAE. After the generative process (a) learns the joint latent neurocognitive variables (Section ), the regularized discriminative process (b) retrofits

its hierarchical latent space to the joint latent space (Section ). Inference networks q and Generation networks p contain neural network parameters θ and φ. Black arrows:

flows of operations. Red arrows: loss functions. MSE and WFPT stand for Mean Squared Error and Wiener First Passage Time, respectively. The heatmaps represent the

probability distributions in the latent spaces. Plasma color maps are for the drift-diffusion variables (zC ∈ R
3), while greenery color maps are for residual neural variables

(zN ∈ R
32). Blue blocks contain µ and σ, which are the parameters of the multivariate Gaussian latent spaces. Gray blocks contain z sampled (∼) from the distributions.

The variables x and y represent EEG signals and choice-RTs, respectively. Each trapezoid represents a different convolutional neural network (see Table 2 for detailed

architectures).

a cognitive model. The innovation of our work lies in the use

of a theoretical account of the cognitive process. This theo-

retical account drives the analysis of neural and behavioral

measures. The framework allows for one-step, joint infer-

ence on integrative neurocognitive models that map EEG

and behavior into a joint latent space. Uniquely, this new ap-

proach has the potential to allow us to generate task-relevant

EEG signals from behavioral data, and predict modulation of

EEG signals by cognitive model parameters. By combining

the exploratory potential of modern latent variable methods

with the theoretical appeal of human-interpretable cognitive

model parameters, the proposed technique can be used to

make predictions of brain signals and cognitive parameters

in future experiments to test neurocognitive theories.

Neurocognitive Variational Autoencoders

Generative EEG Modeling with VAEs. Consider first a

data set P
def

= {D1, . . . , DM } containing M subjects, where

each subject Dm
def

= {x1, . . . , xI} consists of I trials xi ∈
R

C×T that are EEG signals of C channels by T time sam-

ples. Throughout the paper, the subscript m is omitted

when we refer to only one subject or when it is clear from

the context.

For each subject m, we aim to learn an EEG generative

process with a latent-variable model comprising of a fixed

Gaussian prior over latent variables p(z) = N (z | 0, I),
where I is the identity covariance matrix, and a parametric

non-linear Gaussian likelihood pθ(x | z). The learning pro-

cess finds θ such that the Kullback-Leibler (KL) divergence

is minimized between the true data generating distribution

2 of 12 Vo et al.
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pD and the model pθ:

arg min
θ

KL (pD(x)‖pθ(x))

= arg max
θ

EpD(x) [log pθ(x)]
[1]

where pθ(x) =
∫

Z pθ(x | z)p(z)dz is the likelihood of data

point x, approximated by averaging over the latent z.

Nevertheless, estimating pθ(x) is typically intractable.

This issue can be mitigated by introducing a parametric

inference model qφ(z | x) to construct a variational evidence

lower bound on the log-likelihood log pθ(x) as follows:

L(x; θ, φ)
def

= log pθ(x) − KL (qφ(z | x)‖pθ(z | x))

= Eqφ(z|x) [log pθ(x | z)] − KL (qφ(z | x)‖p(z))

[2]

Taking the likelihood model pθ(x | z) to be a decoder and the

inference model qφ(z | x) to be an encoder, a variational au-

toencoder (VAE; Kingma & Welling, 2013; Sohn et al., 2015)

considers this objective from a deep probabilistic autoen-

coder perspective. Here, θ and φ are neural network param-

eters, and learning takes place via stochastic gradient as-

cent using unbiased estimates of ∇θ,φ
1
n

∑n
i=1 L (xi; θ, φ).

In the following sections, we extend the traditional VAE

to create the Neurocognitive VAE (NCVA) (Figure 1). This

model allows us to model a joint distribution of neural and

behavioral data. Instead of a training technique that encour-

ages disentanglement, as in β-VAE (Higgins et al., 2016),

NCVA imposes restrictions on latent space by using a cog-

nitive model that provides interpretability and controllable

generation.

Disentangled Cognitive Latent Space of EEG. Now con-

sider the data Dm
def

= {(x1, y1) , . . . , (xI , yI)}, consisting,

on the one hand, of N trials of the EEG data xi and, on

the other hand, of the corresponding choice response times

(choice-RT) yi. Both xi and yi are associated with a con-

text vector ci (where the applicable context might be an

experimental condition; say, noise conditions ci). For math-

ematical simplicity, the context vector c is not mentioned

when we refer to one of the data modalities.

Crucially, we propose a generative model with two

sources of variation: zC , which is cognitively specific, and

zN , which captures any residual neural variations left in x.

We assume the approximate posterior qφ(zN , zC | x) has

the following fully factorized form:

qφ (zN , zC | x) = qφN
(zN | x) qφC

(zC | x)

qφN
(zN | x) = N

(

zN | µφN
(x), diag

(

σ
2
φN

(x)
))

qφC
(zC | x) = N

(

zC | µφD
(x), diag

(

σ
2
φD

(x)
))

[3]

A Gaussian prior over latent variables p(zC) can be chosen

for each subject. We use subject priors obtained from a

Bayesian hierarchical fitting of a DDM using the Markov

chain Monte Carlo (MCMC) (Nunez et al., 2019).

We learn the generative model by maximizing the lower

bound on log pθ(x, y) as:

L(x, y; θ, φN , φC)

= Eqφ(zN ,zC |x) [log pθ(x | zN , zC) + log p(y | zC)]

− KL (qφN
(zN | x)‖p(zN ))

− KL (qφC
(zC | x)‖p(zC))

[4]

where pθ(x | zN , zC) = N (x | µθ(zN , zC), I) and p(y|zC)
can be any neurocognitive likelihood. This work applies the

Wiener First Passage Time distribution (WFPT; Navarro &

Fuss, 2009) corresponding to the lower boundary:

p(y|zC)

= Wiener (RT | α, τ, δ)

=
π

α2
e− 1

2 (αδ+δ2(RT −τ))

×
+∞
∑

k=1

[

k sin

(

πk

2

)

e− k2π2

2α2
(RT −τ)

]

[5]

The probability at the upper boundary is obtained by setting

δ′ = −δ. zC comprises of three parameters including drift

rate δ, boundary α, non-decision time (ndt) τ . The bias

towards correct or incorrect responses is fixed at 0.5, that is,

the starting point is always unbiased.

The joint inference is performed using only EEG x to en-

sure that encoder θC would learn to extract neural features

that are tailored to cognitive parameters, without relying on

choice-RT y. This has the advantage of providing more

accurate trial-level parameter estimates that are associated

with the EEG data.

Note that the dimension of the cognitive space is signif-

icantly lower than that of the residual neural space. This

facilitates the representation of the variation in neural sig-

nals only through flexible zN . Maximizing the likelihood

of observing neural signals does not guarantee decoder

θ utilizing zC to output x. In the next section, we present

an approach to capture the correlation between behavior

and cognition, as well as the mapping of the variability of

behavior and cognition to neural signals.

Structured EEG Modeling from Behavior. Here, we pro-

pose a discriminative model regularized by the generative

model learned in the previous section. We aim to discrim-

inatively learn the distribution of the cognitive parameters

conditioned on behaviors, and the distribution of the neural

latent variables conditioned on cognitive parameters. The

joint latent space inferred from the behavior can be factor-

ized into the two-level latent space as follows:

qφB
(zN , zC | yi) = qφ2

B
(zN | zC) qφ1

B
(zC | yi) [6]

Inspired by Suzuki et al. (2016), we learn the following ap-

proximations, w.r.t parameter φ1
B :

EpD

[

KL
(

qφC
(zC | x) | qφ1

B
(zC | y)

)]

[7]

Vo et al. Cognition and Individual Differences lab | University of California, Irvine | cidlab.com | December 24, 2024 | 3



A
U
T
H
O
R

F
IN

A
L

V
E
R
S
IO

N

and w.r.t parameter φ2
B :

EpD

[

KL
(

qφN
(zN | x) | qφ2

B
(zN | zC)

)]

[8]

By decomposing the KL divergences as in Hoffman

& Johnson (2016); Vedantam et al. (2017), we ef-

fectively minimize KL
(

q
avg
φC

(zC | x) | qφ1

B
(zC | y)

)

and

KL
(

q
avg
φN

(zN | x) | qφ2

B
(zN | zC)

)

, where q
avg
φ (z | x) =

Ep(x|y) [qφ(z | x)]. As there is little posterior uncertainty

once conditioned on an EEG signal xi, the approximations

are close to the average posterior induced by each of the

EEG xi associated with similar y.

Having fit both the generative and discriminative models,

we can now explore the three-way relationship between

behavior, brain activity, and cognitive processes.

Experiments

EEG and Behavioral Datasets. We used behavioral and

EEG data collected while participants performed a two-

alternative forced-choice task where they had to decide

whether a Gabor patch presented with added dynamic noise

is higher or lower spatial frequency (for details, see Experi-

ment 2 by Nunez et al., 2019). Task difficulty was manipu-

lated by adding spatial white noise to manipulate the quality

of the perceptual evidence available to make the discrimi-

nation. The signal and the noise flickered at 40 and 30 Hz

frequencies, respectively. 4 participants performed the task

in blocks of trials at 3 added noise levels (low, medium, and

high). Each subject performed approximately 3000 trials

over 7 experimental sessions, while 128 channels of EEG

and behavioral data were recorded. The independent com-

ponent analysis (ICA)-based artifact rejection method was

used on EEG data to remove eyeblinks, electrical noise,

and muscle artifacts. A subset of 98 EEG channels were

selected, excluding channels located in the outer ring. EEG

data were bandpass filtered to 1 to 45 Hz in the frequency

domain and then downsampled from 1000 Hz to 250 Hz in

the time domain prior to data analysis. The data for each

subject were divided into 80% for training and validation and

the remaining 20% for testing.

Table 1. Comparison of the sum of Wiener negative log-

likelihood (−
∑

log Wiener (RTi | ωi)) of four subjects on

the test sets. ω̄ represents the median fitted cognitive param-

eters from the training set.

Subjects ω
test
i

ω̄
train

s1 −0.018 0.212

s2 −0.244 0.159

s3 0.264 0.735

s4 0.031 0.230

Results. To validate the neurocognitive modeling approach,

we first examine the trial-by-trial variability of the parameters

within each subject and the generalization of the model to

unseen data. Figures 2a and 2c show the trial-by-trial cor-

relations between estimated DDM posteriors and observed

choice-RTs in the training data from neural signals and be-

havior, respectively. Spearman correlations between fitted

drift rates (δ) and choice-RTs are negatively strong. At the

same time, there are strong positive correlations between

boundaries (α) and choice-RTs, as well as between non-

decision time and choice-RTs. The estimates in NCVA are

regularized by the subject priors obtained from a Bayesian hi-

erarchical fitting of a DDM using MCMC Nunez et al. (2019).

The model was individually fitted for each subject using

choice-RT and accuracy only and accounted for between-

condition variability within subjects. Clear clusters of drift

rates and non-decision-time estimates depending on the

noise conditions can be seen, though boundary estimates

are highly overlapped. It is worth noting that uncertainties

in the estimates can be inspected from the figures through

the posterior covariance. Understandably, the uncertainties

in the estimations from choice-RTs are significantly higher

than from EEG signals, which agree with the theoretical

derivations in Section . Figures 2b and 2d also demon-

strate a satisfactory generalization to unseen data. The

drift rates positively correlate with choice-RTs, whereas the

boundaries and non-decision time negatively correlate with

choice-RTs. The model successfully learns to extract the

neural features that account for the choice-RT variability

at each trial. To evaluate whether obtaining trial estimates

of cognitive parameters improved the model of choice and

choice-RT data, Table 1 presents the Wiener likelihood test

for the neurocognitive generalization ability to unseen data.

The results show that the use of single-trial predictions of

cognitive parameters ωi provides higher likelihood than the

median estimates ω̄ fitted from the training data. This im-

plies that single-trial estimates better account for new data

compared to median estimates.

Figure 3a shows the average of signals generated by

the neurocognitive autoencoder when given a set of approx-

imately 800 test choice-RTs compared to the average of

actual signals associated with the same choice-RTs. At

the selected electrodes, the window of interest is 100 ms

pre-stimulus to 500 ms post-stimulus, which captures the

N200 waveform. The generated and original signals appear

visually similar in the timing and amplitudes of the peaks and

troughs. Figures 3b, 3c, and 3d depict the trial-averaged

frequency spectra and corresponding ERP waveforms of

the reconstructed signals. Regarding the frequency spectra,

the most important features are the 40 and 30 Hz peaks,

which correspond to the flicker frequency of the signal (Ga-

bor patch) and spatial white noise, respectively. Interest-

ingly, the generative model learns to structure output the

steady-state visually evoked potentials (SSVEPs) that oc-

cur in response to a visual stimulus flickering at different

frequencies, even though it was never explicitly encoded

in the model. Moreover, in the low noise condition (b), the

30 Hz peak is large and the 40 Hz is small, while in the

high noise condition (d), the 30 Hz peak is reduced and the

4 of 12 Vo et al.
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(a) Fitted from EEG (training data)

(b) Predicted from EEG (test data)

(c) Fitted from choice-RTs (training data)

(d) Predicted from choice-RTs (test data)

Fig. 2. Drift-diffusion single-trial parameter estimations from correct responses of subject s1. The parameters are constrained by the subject priors resulting from a Bayesian

MCMC modeling (without EEG data). Scatter plots illustrate the relationship between the parameters and the observed choice-RTs for each trial. The top two rows are

posterior inferences from neural signals, while the bottom two are from behaviors. The left column shows the drift-rate (δ) estimates, the middle column shows boundary (α)

estimates, and the right column presents non-decision time (ndt) estimates. The correlations between the choice-RTs and the inferred DDM parameters are consistent with

what is expected. On top of each panel are the Spearman correlation coefficients (ρ). The covariances of the inferred parameters are indicated by circles, which correspond

to contours having one standard deviation. For clarity, each circle is magnified 300 times.

Vo et al. Cognition and Individual Differences lab | University of California, Irvine | cidlab.com | December 24, 2024 | 5
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40 Hz peak is enhanced. In terms of ERP waveforms, the

model captures the relationships of the N200 peak laten-

cies with respect to the additive noise conditions. Higher

additive white noise in the stimulus effectively increases the

latency and decreases the amplitude of the N200. We focus

on the N200 signal because the original study (Nunez et

al., 2019) found strong relationships between N200 latency

and choice-RT, and thus the N200 is a good validation of

our model. These prove the convergence of the model in

optimizing the lower bound of the conditional likelihood map-

ping from behavioral data to EEG features, which effectively

encodes differences in the stimuli presented to the subjects

in the latent variable space.

In addition to evaluating traditional ERP estimates (trial-

averaged), we also assess the single-trial ERP estimate

(channel-averaged). To increase the signal-to-noise ratio to

better detect the N200, the first singular-value decomposi-

tion (SVD) component obtained from the ERP response is

taken as a channel weighting function. More details of the

SVD method can be seen at (Nunez et al., 2019). Figure 4

shows the performance of the model in learning the N200

feature in each trial. As shown in Figure 4, the distributions

of the single-trial N200 peak latencies, as well as the ampli-

tudes calculated from the generated signals, closely match

those of the original signals at three different noise levels.

The peak amplitude distribution is somewhat broader than

the original data’s generated distribution. Importantly, the

model can generate the variability of the N200 latency with

the experimental manipulation of low, medium, and high

noise, systematically increasing the N200 latency in the

generated signals.

Figure 5 represents the sensitivity analysis of the choice-

RT and drift-diffusion parameters regardless of the noise

conditions. In the left column, we examine the sensitivity of

the neural signals generated by the choice-RTs. We can

see similar patterns across subjects where the increases in

choice-RTs lead to significant declines in the 30 Hz and the

rises of the N200 latencies. This confirms the minimization

approach of the KL divergence between the latent spaces

inferred from the behavioral data and the neural signals.

Power at 40 Hz reflecting the neural response to the noise

also changes according to the choice-RTs, though the pat-

tern is not as strong as the subjects suppressed the noise

signal in all conditions.

One of the powerful tools for exploring the relationship

between cognitive processes is to examine the sensitivity of

neural signals to cognitive parameters. The middle and right

columns of Figure 5 depict the effect of hypothetical modu-

lations of drift rates and non-decision time on the generated

neural signals. The results show that our model reveals

the intricate interactions between cognitive parameters and

neural signals, which is consistent with prior discoveries in

the cognitive modeling literature. As the non-decision time is

faster, the N200 latencies are shorter, and the 30 Hz peaks

are larger. Accordingly, the amplitudes of the N200 peaks

are more prominent, though not shown in the figures for clar-

ity. The same interactions are observed with the increase

in drift rates, representing evidence accumulation. Again,

the effects on 40 Hz peaks are weaker and depend on the

subjects. We did not observe the effects of the boundary

separation (caution) on the neural signals. The effect can

be reversed with slower non-decision times and lower drift

rates. The strongest effects can be seen when both pa-

rameters influence neural signals. This demonstrates the

effectiveness of the designs of the hierarchical latent vari-

ables inferred from choice-RTs and the disentangled latent

space produced by the EEG data.

Conclusion

In this work, we proposed a joint behavioral and EEG model-

ing approach driven by a cognitive model of decision making.

The experimental results demonstrate the effectiveness of

our Neurocognitive VAE in simultaneously modeling high-

dimensional EEG signals and low-dimensional behavioral

data. Remarkably, the model learns essential task-relevant

neural features, e.g. N200 peaks and SSVEP, without ex-

plicit specification in the optimization objective. Furthermore,

the model captures how these features modulate behavior,

specifically discovering relationships between brain activity

and behavior consistent with other models based on prior

knowledge. This suggests that the Neurocognitive VAE

helps uncover neural signals linked to behavioral data by

mapping to a structured latent space. Compared to the

aforementioned published joint models (Nunez et al., 2015,

2017, 2019; Lui et al., 2021; Turner et al., 2013, 2016), our

end-to-end model is capable of inferring task-relevant EEG

features from behavior without prior knowledge of which

features to optimize. The structured latent space allows

the learning of behavioral variability to drive the EEG data

generation process, leading to the prediction of the structure

of EEG features in relation to the stimuli used in the experi-

ments (N200 and SSVEP) and the behavioral performance

(choice-RT). In addition, the model allows us to directly

map the variability of cognitive parameters to neural signals,

allowing for theoretical predictions that guide future experi-

mental studies. It should be noted that our framework does

not serve to refine the functional form of process-oriented

computational models. Instead, it presumes a set of fixed

assumptions; in the DDM, a constant drift rate and boundary

separation within trials. Importantly, our framework can be

generalized to encompass any other neural measures com-

bined with any cognitive model to explain behavior, provided

that the cognitive model expresses a closed-form likelihood

of behavioral data. Importantly, by parameterizing the like-

lihood by a deep neural network receiving neural data as

input, trial-level parameter inferences are made possible. In

this research, we assume a DDM posterior with a diagonal

covariance matrix. This could lead to an overestimation

of the variance of the marginal posteriors if the true poste-

rior has dependencies. It would be beneficial to investigate

the use of a full covariance matrix as an alternative. It is

6 of 12 Vo et al.
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(a) EEG data at the selected electrodes

(b) Low noise condition

(c) Medium noise condition

(d) High noise condition

Fig. 3. Performance of the model in reconstructing 98 EEG channels of subject s1 by averaging ≈ 800 predicted EEG trials from ≈ 800 choice-RTs in the test set. Time

point zero denotes the time point of stimulus onset. The first row displays the original (blue) and generated (orange) trial-averaged EEG data at the pooled electrodes. The

x-axis denotes the time in milliseconds from stimulus onset, and the y-axis denotes the signal amplitude. The second, third, and fourth rows are (left) frequency spectra and

(right) EEG signals averaged over all test choice-RT trials (≈ 800/3 per condition). The signals on the right are low-pass filtered at 15 Hz for clarity of N200 peaks. Each

colored line corresponds to one reconstructed EEG channel. In low-noise conditions, the spectra show a strong peak at the Gabor flicker frequency of 30 Hz, and the ERP

waveform shows a shorter N200 latency and larger peak amplitude. Under high-noise conditions, the spectra show a strong peak at the noise flicker frequency of 40 Hz, and

the ERP waveform shows a longer N200 latency and a smaller peak amplitude.

Vo et al. Cognition and Individual Differences lab | University of California, Irvine | cidlab.com | December 24, 2024 | 7
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(a) Subject s1

(b) Subject s2

(c) Subject s3

(d) Subject s4

Fig. 4. Performance of the model in reconstructing single-trial N200 peaks from choice-RTs in four subjects. The dotted lines are references to the original data. The

distributions of (left) single-trial N200 peak latencies across three noise conditions and (right) the N200 peak amplitude statistics are shown. Single-trial observations of the

peak latency of N200 are found using the SVD method (Nunez et al., 2019) for each subject and noise condition.

8 of 12 Vo et al.
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(a) Subject s1

(b) Subject s2

(c) Subject s3

(d) Subject s4

Fig. 5. Sensitivity analysis of choice-RTs and latent drift-diffusion parameters on EEG signal generation in four subjects. The left column presents the effects of choice-RTs

on the output neural signals. The blue bars represent the power at 30 Hz, while the red bars represent the power at 40 Hz. The orange bars show the N200 latencies.

The middle column shows the changes in the single-trial N200 distribution w.r.t to hypothetical changes in the cognitive parameters. The yellow distribution represents the

reference data, while the blue and red ones correspond to modified parameter settings that decrease or increase the N200 latencies, respectively. The modification in subject

s4 (ndt ± 0.05, δ± 0.3) is different from other subjects. The right column characterizes the changes in 30 Hz and 40 Hz peaks w.r.t to the changes in the same cognitive

parameters.
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important to mention that our validation process focused

on correct responses. Due to the low number of incorrect

responses compared to correct ones, we lack confidence in

interpreting the results in this study for the incorrect trials,

although the direction of the trial-level parameter fits was

consistent with the results for correct trials. We anticipate

future research to explore strategies to address the class

imbalance problem in deep learning models (Johnson &

Khoshgoftaar, 2019). Further work with a larger dataset is

needed to demonstrate that we can extend the model to

new individuals. In principle, this would potentially allow us

to predict brain activity in clinical populations with known

behavioral differences.
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Appendix

Neural Network Architectures and Training Hyperpa-

rameters. The inferential and generative processes are pa-

rameterized by deep neural networks, as shown by the flows

in Figure 1. Table 2 details the architectures of the five net-

works. The input EEG signals are of size 98 x 250 (1 second

of data of 98 channels at 250 Hz). The feature extraction

layers in the EEG and cognitive encoders are similar to

Vo et al. (2022). All the feature maps have 128 channels.

Leaky ReLU (lReLU) activation functions are applied to all

layers, with a slope of 0.1 to stimulate easier gradient flow.

Batch normalizations (BN) (Ioffe & Szegedy, 2015) are used

in each convolutional layer of the encoders and decoders.

Self-attention layers (Zhang et al., 2019) are applied in the

encoders and decoders to better account for long-range re-

lationships in time series. c are noise condition embeddings

as one-hot vectors (size 3). The size of zN is set at 32 as

increasing the dimension did not lead to any improvement

in performance on a validation set.

In Equation (4), the term log p(y | zC) is weighted by

λ = 2 to scale up the likelihood of low-dimensional behav-

ior. The KL terms are weighted by β = 20. The KL terms

are normalized to balance the KL divergence loss and the

reconstruction loss. Please refer to Sections 4.2 and A6

of (Higgins et al., 2016) for further information. The opti-

mization of qφC
(zC | x) is divided into two stages. We first

optimize the network w.r.t drift rate δ and boundary α, while

non-decision time τ is set to 0.93 · RTmin for each subject,

approximating the results of the Bayesian MCMC modeling

Nunez et al. (2019). Having trained φC for δ and α, we

can proceed to train only the last fully connected layer that

predicts τ . This procedure is to circumvent the difficulty of

simultaneously optimizing the network for the boundary and

the non-decision time on the experimental data. We used

Adam (Kingma & Ba, 2014) for optimizations, with a learning

rate of 5e-4 and exponential decay rates β1 = 0.9 and β2 =

0.999.

Simulation Studies. We assessed our ability to recover

true non-decision time (NDT) and drift rate by simulating

response time data and EEG signals. Response time data

were simulated from a drift-diffusion model with trial-to-trial

variability in NDT and evidence accumulation rate (i.e., drift

rate). To simulate EEG signals with a known relationship

with DDM parameters, we specifically focused on N200 due

to the significant associations between N200 latency and

NDT reported by Nunez et al. (2019). In our new experi-

ments, we additionally observed a substantial relationship

between drift rate and N200 latency, which we included in

the simulation. Boundary separation was not included in

the simulation, as we did not find any neural correlates of

variability in boundary separation, and those are usually only

found in tasks with trial-level accuracy feedback (Cavanagh

& Frank, 2014; Nunez et al., 2024).

To simulate single-trial EEG signals, we shifted the true

averaged ERP waveform based on each sample of trial-level

NDT, using a linear regression slope of 1, as in Nunez et

al. (2019). EEG noise was obtained from the original data,

using independently sampled segments that did not include

responses to stimuli. The resulting ERP and EEG wave-

forms were then combined to generate artificial EEG signals

for each trial that carried the N200 latency information and

was associated with choice and response time.

It is evident from the results in Figure 6 that the model can
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Table 2. Neural network parametrization

EncoderN − qφN
(zN | x) EncoderC − qφC

(zC | x) Decoder - pθ(x | zN , zC)

maps EEG signals to neural latents maps EEG signals to cognitive latents reconstructs EEG signals

Dropout(0.3) Get zC

Conv 1, lReLU, 128 x 250 Conv 1, lReLU, 128 x 250 Linear 128, lReLU

Conv 6, BN, lReLU
X 2

Conv 6, BN, lReLU, Dropout(0.7) Linear 32, lReLU

Conv 6, Stride 2, BN, lReLU Conv 6, Stride 2, BN, lReLU, Dropout(0.7) Concat zN , c

Self Attention Self Attention Conv Transp 8, Stride 4, 512 Channels, BN, lReLU

Conv 6, BN, lReLU
X 2

Conv 6, BN, lReLU, Dropout(0.7) Conv Transp 8, Stride 4, 256 Channels, BN, lReLU

Conv 6, Stride 2, BN, lReLU Conv 6, Stride 2, BN, lReLU, Dropout(0.7) Self Attention

Reshape 2048, Concat c Reshape 2048, Concat c Conv Transp 6, Stride 3, 128 Channels, BN, lReLU

Linear 32 (mean zN ) Linear 1 (mean δ), Linear 1 (logvar δ) Conv Transp 6, Stride 3, 128 Channels, BN, lReLU

Linear 32 (logvar zN ) Linear 1, Softplus (mean α) Self Attention

Linear 1 (logvar α) Conv Transp 10, Stride 2, 98 Channels

Linear 1, Softplus (mean ndt)

Linear 1 (logvar ndt)

Encoder2

β
− q2

β
(zN | zC) Encoder1

β
− q1

β
(zC | yi)

maps cognitive latents to neural latents maps behaviors to cognitive latents

Linear 128, lReLU Linear 128, lReLU

Linear 128, lReLU Linear 128, lReLU

Concat c Concat c

Linear 64 Linear 6

accurately recover the original distributions of trial-specific

parameters. In particular, the generating and recovered dis-

tributions strongly overlap, and the correlation plots indicate

that our single-trial estimates of cognitive parameters exhibit

good correlations with the reference parameters.

(a) Parameter distributions

(b) Parameter correlations

Fig. 6. Drift-diffusion parameter estimates from neural signals in a simulation of

trial-level choice RTs and EEG signals. The top panels show the overlap between

the recovered and the original distributions of trial-specific drift-rate and NDT. The

reference values for the drift rate and NDT are drawn from the normal distributions

N (1.5, 0.2) and N (0.3, 0.05), respectively. The bottom scatter plots illustrate the

relationship between the recovered parameters and the original parameters each

trial. ρ are the Spearman correlation coefficients.
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